module Ida:sig..end
Variable-step solution of DAE initial value problems with zero-crossing detection.
This module solves numerically problems of the form $F(t, y, \dot{y})=0$, $y(t_0) = y_0$, $\dot{y}(t_0)=\dot{y}_0$.
This documented interface is structured as follows.
type('d, 'k)session =('d, 'k) session
A session with the IDA solver.
An example session with Ida (ida_skel.ml):
open Sundials
(* 1. Define a residual function. *)
let resf _t v v' r =
r.{0} <- v.{2} -. v'.{0};
r.{1} <- v.{3} -. v'.{1};
r.{2} <- v'.{2} -. v.{4} *. v.{0};
r.{3} <- v'.{3} -. v.{4} *. v.{1} +. 9.81;
r.{4} <- v.{2}*.v.{2} +. v'.{2}*.v.{0} +. v.{3}*.v'.{1} +. v'.{3}*.v.{1}
(* 2. Optionally define a root function. *)
let g _t v _v' gout = gout.{0} <- v.{0} -. v.{1} *. 0.5774
(* 3. Set vector of initial values.
The length of this vector determines the problem size. *)
let vd = RealArray.of_list [ 0.9848; 0.1736; 0.0; 0.0; 0.0 ]
let v = Nvector_serial.wrap vd
let v' = Nvector_serial.make 5 0.0
(* 4. Create and initialize a solver session.
This will initialize a specific linear solver and the root-finding
mechanism, if necessary. *)
let m = Matrix.dense 5
let s = Ida.(init (SStolerances (1e-9, 1e-9))
~lsolver:Dls.(solver (dense v m))
resf ~roots:(1, g) 0.0 v v');;
(* 5. Set optional inputs, e.g.,
call [set_*] functions to change solver parameters. *)
Ida.set_stop_time s 10.0;
Ida.set_all_root_directions s RootDirs.Decreasing;;
(* 6. Correct initial values *)
let vids = Nvector_serial.make 5 Ida.VarId.differential;;
(Nvector_serial.unwrap vids).{4} <- Ida.VarId.algebraic;
Ida.set_suppress_alg s ~varid:vids true;
Ida.calc_ic_ya_yd' s ~y:v ~y':v' 0.1;;
(* 7. Advance the solution in time,
by repeatedly calling [solve_normal] or [solve_one_step]. *)
let rec go (t, r) =
Printf.printf "% .10e\t% .10e\t% .10e\t% .10e\t% .10e\t% .10e\n"
t vd.{0} vd.{1} vd.{2} vd.{3} vd.{4};
match r with
| Ida.Success -> go (Ida.solve_normal s (t +. 0.05) v v')
| Ida.RootsFound -> begin
vd.{2} <- -. 0.5 *. vd.{2};
vd.{3} <- -. 0.5 *. vd.{3};
Ida.reinit s t v v';
Ida.calc_ic_ya_yd' ~y:v ~y':v' s ~varid:vids (t +. 0.05);
go (t, Ida.Success)
end
| Ida.StopTimeReached -> ();;
Printf.printf "time\tx\ty\tx'\ty'\tp\n";;
go (0.0, Ida.Success);;
(* 8. Get optional outputs,
call the [get_*] functions to examine solver statistics. *)
let ns = Ida.get_num_steps s
type[> Nvector_serial.kind ]serial_session =(Sundials.RealArray.t, [> Nvector_serial.kind ] as 'a) session
Alias for sessions based on serial nvectors.
type('data, 'kind)linear_solver =('data, 'kind) linear_solver
Linear solvers used by Ida.
type[> Nvector_serial.kind ]serial_linear_solver =(Nvector_serial.data, [> Nvector_serial.kind ] as 'a) linear_solver
Alias for linear solvers that are restricted to serial nvectors.
type'ddouble ='d * 'd
Workspaces with two temporary vectors.
type'dtriple ='d * 'd * 'd
Workspaces with three temporary vectors.
type('t, 'd)jacobian_arg =('t, 'd) jacobian_arg= {
|
jac_t : |
(* | The independent variable. | *) |
|
jac_y : |
(* | The dependent variable vector. | *) |
|
jac_y' : |
(* | The derivative vector (i.e. $\frac{\mathrm{d}y}{\mathrm{d}t}$). | *) |
|
jac_res : |
(* | The current value of the residual vector. | *) |
|
jac_coef : |
(* | The coefficient $c_j$ in $J = \frac{\partial F}{\partial y} + c_j \frac{\partial F}{\partial\dot{y}}$. | *) |
|
jac_tmp : |
(* | Workspace data. | *) |
}
Arguments common to Jacobian callback functions.
type'dresfn =float -> 'd -> 'd -> 'd -> unit
Residual functions that define a DAE problem. They are passed four * arguments:
t, the value of the independent variable, i.e., the simulation time,y, the vector of dependent-variable values, i.e., $y(t)$,y', the vector of dependent-variable derivatives, i.e.,
$\dot{y} = \frac{\mathrm{d}y}{\mathrm{d}t}$, and,r a vector for storing the residual value, $F(t, y, \dot{y})$.Within the function, raising a Sundials.RecoverableFailure exception
indicates a recoverable error. Any other exception is treated as an
unrecoverable error.
y, y', and r should not be accessed after the function
returns.module Dls:sig..end
Direct Linear Solvers operating on dense, banded and sparse matrices.
module Spils:sig..end
Scaled Preconditioned Iterative Linear Solvers.
val matrix_embedded_solver : (unit, 'data, 'kind, [> `MatE ]) Sundials.LinearSolver.t ->
('data, 'kind) linear_solverCreate an IDA-specific linear solver from a generic matrix embedded solver.
type'dataerror_weight_fun ='data -> 'data -> unit
Functions that set the multiplicative error weights for use in the weighted
RMS norm. The call efun y ewt takes the dependent variable vector y and
fills the error-weight vector ewt with positive values or raises
Sundials.NonPositiveEwt. Other exceptions are eventually propagated, but
should be avoided (efun is not allowed to abort the solver).
type ('data, 'kind) tolerance =
| |
SStolerances of |
(* |
| *) |
| |
SVtolerances of |
(* |
| *) |
| |
WFtolerances of |
(* | Set the multiplicative error weights for the weighted RMS norm. | *) |
Tolerance specifications.
val default_tolerances : ('data, 'kind) toleranceA default relative tolerance of 1.0e-4 and absolute tolerance of 1.0e-8.
type'drootsfn =float -> 'd -> 'd -> Sundials.RealArray.t -> unit
Called by the solver to calculate the values of root functions. These ‘zero-crossings’ are used to detect significant events. The function is passed four arguments:
t, the value of the independent variable, i.e., the simulation time,y, the vector of dependent-variable values, i.e., $y(t)$,y', the vector of dependent-variable derivatives, i.e.,
$\dot{y} = \frac{\mathrm{d}y}{\mathrm{d}t}$, and,gout, a vector for storing the value of $g(t, y, \dot{y})$.y, y', and gout should not be accessed after the function
has returned.val init : ?context:Sundials.Context.t ->
('d, 'kind) tolerance ->
?nlsolver:('d, 'kind, ('d, 'kind) session, [ `Nvec ])
Sundials_NonlinearSolver.t ->
?nlsresfn:'d resfn ->
lsolver:('d, 'kind) linear_solver ->
'd resfn ->
?varid:('d, 'kind) Nvector.t ->
?roots:int * 'd rootsfn ->
float ->
('d, 'kind) Nvector.t -> ('d, 'kind) Nvector.t -> ('d, 'kind) sessionCreates and initializes a session with the solver. The call
init linsolv tol ~nlsolver ~nlsresfn ~lsolver f ~varid:varid ~roots:(nroots, g) t0 y0 y'0has as arguments:
tol, the integration tolerances,nlsolver, the solver to use to calculate integration steps
and initial conditions,nlsresfn, alternative residual function to use in
nonlinear system function evaluations,lsolver, used by nlsolvers based on Newton interation,f, the DAE residual function,varid, optionally classifies variables as algebraic or differential,nroots, the number of root functions,g, the root function ((nroots, g) defaults to Ida.no_roots),t0, the initial value of the independent variable,y0, a vector of initial values that also determines the number
of equations, and,y'0, the initial values for
$\dot{y} = \frac{\mathrm{d}y}{\mathrm{d}t}$.This function does everything necessary to initialize a session, i.e.,
it makes the calls referenced below. The Ida.solve_normal and
Ida.solve_one_step functions may be called directly.
If an nlsolver is not specified, then the
Newton module is used by default.
The nlsolver must be of type
RootFind, otherwise an
Ida.IllInput exception is raised.
The alternative residual function for nonlinear system function evaluations is only supported for Sundials >= 5.8.0.
By default, the session is created using the context returned by
Sundials.Context.default, but this can be overridden by passing an
optional context argument.
val no_roots : int * 'd rootsfnA convenience value for signalling that there are no roots to monitor.
module VarId:sig..end
Symbolic names for constants used when calculating initial values or supressing local error tests.
val set_id : ('d, 'k) session -> ('d, 'k) Nvector.t -> unitClass components of the state vector as either algebraic or differential.
These classifications are required by Ida.calc_ic_ya_yd' and
Ida.set_suppress_alg. See also Ida.VarId.
val set_suppress_alg : ('d, 'k) session -> ?varid:('d, 'k) Nvector.t -> bool -> unitIndicates whether or not to ignore algebraic variables in the local error
test. When ignoring algebraic variables (true), a varid vector must be
specified either in the call or by a prior call to Ida.init or Ida.set_id.
Suppressing local error tests for algebraic variables is discouraged
for DAE systems of index 1 and encouraged for systems of index 2 or
more.
val calc_ic_y : ('d, 'k) session -> ?y:('d, 'k) Nvector.t -> float -> unitComputes the initial state vector for certain index-one problems.
All components of $y$ are computed, using $\dot{y}$, to satisfy
the constraint $F(t_0, y_0, \dot{y}_0) = 0$. If given, the
~y vector is filled with the corrected values. The last argument is
the first vale of $t$ at which a solution will be requested.
A Ida.reinit is required before calling this function after
Ida.solve_normal or Ida.solve_one_step.
val calc_ic_ya_yd' : ('d, 'k) session ->
?y:('d, 'k) Nvector.t ->
?y':('d, 'k) Nvector.t -> ?varid:('d, 'k) Nvector.t -> float -> unitComputes the algebraic components of the initial state and derivative
vectors for certain index-one problems.
The elements of $y$ and $\dot{y}$ marked as algebraic are computed,
using $\dot{y}$, to satisfy the constraint
$F(t_0, y_0, \dot{y}_0) = 0$.
The variable ids must be given in ~varid or by a prior call to Ida.init or
Ida.set_id.
If given, the ~y and ~y' vectors are filled with the corrected values.
The last argument is the first vale of $t$ at which a solution will be
requested. A Ida.reinit is required before calling this function after
Ida.solve_normal or Ida.solve_one_step.
val set_nonlin_conv_coef_ic : ('d, 'k) session -> float -> unitSpecifies the positive constant in the nonlinear convergence test of the initial condition calculation.
val set_max_num_steps_ic : ('d, 'k) session -> int -> unitSpecifies the maximum number of steps taken in attempting to reach a given output time in the initial condition calculation.
val set_max_num_jacs_ic : ('d, 'k) session -> int -> unitSpecifies the maximum number of approximate Jacobian or preconditioner evaluations allowed when the Newton iteration appears to be slowly converging.
val set_max_num_iters_ic : ('d, 'k) session -> int -> unitSpecifies the maximum number of Newton iterations allowed in any one attempt to calculate initial conditions.
val set_max_backs_ic : ('d, 'k) session -> int -> unitSpecifies the maximum number of linesearch backtracks allowed in any Newton iteration, when solving the initial conditions calculation problem.
Config.NotImplementedBySundialsVersion Feature not available.val set_line_search_ic : ('d, 'k) session -> bool -> unitEnables (true) or disables (false) the linesearch algorithm
in the initial condition calculation.
val set_step_tolerance_ic : ('d, 'k) session -> float -> unitSpecifies a positive lower bound on the Newton step in the initial condition calculation.
val get_num_backtrack_ops : ('d, 'k) session -> intReturns the number of backtrack operations during Ida.calc_ic_ya_yd' or
Ida.calc_ic_y.
type solver_result =
| |
Success |
(* | The solution was advanced. (IDA_SUCCESS) | *) |
| |
RootsFound |
(* | A root was found. See | *) |
| |
StopTimeReached |
(* | The stop time was reached. See | *) |
Values returned by the step functions. Failures are indicated by exceptions.
val solve_normal : ('d, 'k) session ->
float ->
('d, 'k) Nvector.t -> ('d, 'k) Nvector.t -> float * solver_resultIntegrates a DAE system over an interval. The call
tret, r = solve_normal s tout yout y'out has as arguments
s, a solver session,tout the next time at which the solution is desired,yout, a vector to store the computed solution, and,y'out, a vector to store the computed derivative.It returns tret, the time reached by the solver, which will be equal to
tout if no errors occur, and, r, a Ida.solver_result.
IllInput Missing or illegal solver inputs.TooMuchWork The requested time could not be reached in mxstep internal steps.TooMuchAccuracy The requested accuracy could not be satisfied.ErrFailure Too many error test failures within a step or at the minimum step size.ConvergenceFailure Too many convergence test failures within a step or at the minimum step size.LinearInitFailure Linear solver initialization failed.LinearSetupFailure Linear solver setup failed unrecoverably.LinearSolveFailure Linear solver solution failed unrecoverably.ConstraintFailure Inequality constraints were violated and recovery is not possible.RepeatedResFuncFailure The residual function repeatedly returned a recoverable error but the solver could not recover.ResFuncFailure The residual function failed unrecoverably.RootFuncFailure Failure in the rootfinding function g.val solve_one_step : ('d, 'k) session ->
float ->
('d, 'k) Nvector.t -> ('d, 'k) Nvector.t -> float * solver_resultLike Ida.solve_normal but returns after one internal solver step.
val get_dky : ('d, 'k) session -> ('d, 'k) Nvector.t -> float -> int -> unitReturns the interpolated solution or derivatives.
get_dky s dky t k computes the kth derivative of the function at time
t, i.e., $\frac{d^\mathtt{k}y(\mathtt{t})}{\mathit{dt}^\mathtt{k}}$,
and stores it in dky. The arguments must satisfy
$t_n - h_u \leq \mathtt{t} \leq t_n$—where $t_n$
denotes Ida.get_current_time and $h_u$ denotes Ida.get_last_step,—
and $0 \leq \mathtt{k} \leq q_u$—where $q_u$ denotes
Ida.get_last_order.
This function may only be called after a successful return from either
Ida.solve_normal or Ida.solve_one_step.
BadT t is not in the interval $[t_n - h_u, t_n]$.BadK k is not in the range 0, 1, ..., $q_u$.val reinit : ('d, 'k) session ->
?nlsolver:('d, 'k, ('d, 'k) session, [ `Nvec ])
Sundials_NonlinearSolver.t ->
?nlsresfn:'d resfn ->
?lsolver:('d, 'k) linear_solver ->
?roots:int * 'd rootsfn ->
?resfn:'d resfn ->
float -> ('d, 'k) Nvector.t -> ('d, 'k) Nvector.t -> unitReinitializes the solver with new parameters and state values. The
values of the independent variable, i.e., the simulation time, the
state variables, and the derivatives must be given.
If the argument ~linsolv is not given, the current linear solver
remains unchanged. The argument ~roots works similarly; pass
Ida.no_roots to disable root finding. The ~resfn argument gives the
possibility to change the residual function. Similarly for ~nlsresfn
and the alternative residual function for nonlinear system function
iterations.
val set_tolerances : ('d, 'k) session -> ('d, 'k) tolerance -> unitSet the integration tolerances.
val set_error_file : ('d, 'k) session -> Sundials.Logfile.t -> unitConfigure the default error handler to write messages to a file. By default it writes to Logfile.stderr.
val set_err_handler_fn : ('d, 'k) session -> (Sundials.Util.error_details -> unit) -> unitSpecifies a custom function for handling error messages. The handler must not fail: any exceptions are trapped and discarded.
val clear_err_handler_fn : ('d, 'k) session -> unitRestores the default error handling function.
val set_max_ord : ('d, 'k) session -> int -> unitSpecifies the maximum order of the linear multistep method.
val set_max_num_steps : ('d, 'k) session -> int -> unitSpecifies the maximum number of steps taken in attempting to reach a given output time.
val set_init_step : ('d, 'k) session -> float -> unitSpecifies the initial step size.
val set_max_step : ('d, 'k) session -> float -> unitSpecifies an upper bound on the magnitude of the step size.
val set_stop_time : ('d, 'k) session -> float -> unitLimits the value of the independent variable t when solving.
By default no stop time is imposed.
val set_max_err_test_fails : ('d, 'k) session -> int -> unitSpecifies the maximum number of error test failures permitted in attempting one step.
val set_max_nonlin_iters : ('d, 'k) session -> int -> unitSpecifies the maximum number of nonlinear solver iterations permitted per step.
val set_max_conv_fails : ('d, 'k) session -> int -> unitSpecifies the maximum number of nonlinear solver convergence failures permitted during one step.
val set_nonlin_conv_coef : ('d, 'k) session -> float -> unitSpecifies the safety factor used in the nonlinear convergence test.
val set_constraints : ('d, 'k) session -> ('d, 'k) Nvector.t -> unitSpecifies a vector defining inequality constraints for each
component of the solution vector u. See Sundials.Constraint.
val clear_constraints : ('d, 'k) session -> unitDisables constraint checking.
val get_work_space : ('d, 'k) session -> int * intReturns the sizes of the real and integer workspaces.
real_size, integer_size)val get_num_steps : ('d, 'k) session -> intReturns the cumulative number of internal solver steps.
val get_num_res_evals : ('d, 'k) session -> intReturns the number of calls to the residual function.
val get_num_lin_solv_setups : ('d, 'k) session -> intReturns the number of calls made to the linear solver's setup function.
val get_num_err_test_fails : ('d, 'k) session -> intReturns the number of local error test failures that have occurred.
val get_last_order : ('d, 'k) session -> intReturns the integration method order used during the last internal step.
val get_current_order : ('d, 'k) session -> intReturns the integration method order to be used on the next internal step.
val get_last_step : ('d, 'k) session -> floatReturns the integration step size taken on the last internal step.
val get_current_step : ('d, 'k) session -> floatReturns the integration step size to be attempted on the next internal step.
val get_actual_init_step : ('d, 'k) session -> floatReturns the the value of the integration step size used on the first step.
val get_current_time : ('d, 'k) session -> floatReturns the the current internal time reached by the solver.
val get_tol_scale_factor : ('d, 'k) session -> floatReturns a suggested factor by which the user's tolerances should be scaled when too much accuracy has been requested for some internal step.
val get_err_weights : ('d, 'k) session -> ('d, 'k) Nvector.t -> unitReturns the solution error weights at the current time.
val get_est_local_errors : ('d, 'k) session -> ('d, 'k) Nvector.t -> unitReturns the vector of estimated local errors.
type integrator_stats = {
|
num_steps : |
(* | Cumulative number of internal solver steps. | *) |
|
num_res_evals : |
(* | Number of calls to the residual function. | *) |
|
num_lin_solv_setups : |
(* | Number of setups calls to the linear solver. | *) |
|
num_err_test_fails : |
(* | Number of local error test failures. | *) |
|
last_order : |
(* | Integration method order used in the last internal step. | *) |
|
current_order : |
(* | Integration method order to be used in the next internal step. | *) |
|
actual_init_step : |
(* | Integration step sized used on the first step. | *) |
|
last_step : |
(* | Integration step size of the last internal step. | *) |
|
current_step : |
(* | Integration step size to attempt on the next internal step. | *) |
|
current_time : |
(* | Current internal time reached by the solver. | *) |
}
Summaries of integrator statistics.
val get_integrator_stats : ('d, 'k) session -> integrator_statsReturns the integrator statistics as a group.
val print_integrator_stats : ('d, 'k) session -> Stdlib.out_channel -> unitPrints the integrator statistics on the given channel.
val get_num_nonlin_solv_iters : ('d, 'k) session -> intReturns the cumulative number of nonlinear (functional or Newton) iterations.
val get_num_nonlin_solv_conv_fails : ('d, 'k) session -> intReturns the cumulative number of nonlinear convergence failures.
val get_nonlin_solv_stats : ('d, 'k) session -> int * intReturns both the numbers of nonlinear iterations performed nniters and
nonlinear convergence failures nncfails.
nniters, nncfails)val set_root_direction : ('d, 'k) session -> Sundials.RootDirs.d array -> unitset_root_direction s dir specifies the direction of zero-crossings to be
located and returned. dir may contain one entry for each root function.
val set_all_root_directions : ('d, 'k) session -> Sundials.RootDirs.d -> unitLike Ida.set_root_direction but specifies a single direction for all root
functions.
val set_no_inactive_root_warn : ('d, 'k) session -> unitDisables issuing a warning if some root function appears to be identically zero at the beginning of the integration.
val get_num_roots : ('d, 'k) session -> intReturns the number of root functions.
val get_root_info : ('d, 'k) session -> Sundials.Roots.t -> unitFills an array showing which functions were found to have a root.
val get_num_g_evals : ('d, 'k) session -> intReturns the cumulative number of calls made to the user-supplied root function g.
These advanced functions may be useful for writing customized nonlinear solver routines.
val get_current_cj : ('d, 'k) session -> floatReturns the scalar $c_j$ , which is proportional to the inverse of the step size.
val get_current_y : ('d, 'k) session -> 'dReturns the current $y$ vector. This vector provides direct access to the data within the integrator.
val get_current_yp : ('d, 'k) session -> 'dReturns the current $\dot{y}$ vector. This vector provides direct access to the data within the integrator.
type 'd nonlin_system_data = {
|
tn : |
(* | Independent variable value $t_n$ . | *) |
|
yypred : |
(* | Predicted value of $y_{\mathit{pred}}$ at $t_n$ . This data must not be changed. | *) |
|
yppred : |
(* | Predicted value of $\dot{y}_{\mathit{pred}}$ at $t_n$ . This data must not be changed. | *) |
|
yyn : |
(* | The vector $y_n$ . This data may not be current and may need to be filled. | *) |
|
ypn : |
(* | The vector $\dot{y}_n$ . This data may not be current and may need to be filled. | *) |
|
res : |
(* | The residual function evaluated at the current time and state, $F(t_n, y_n, \dot{y}_n)$ . * This data may not be current and may need to be filled. | *) |
|
cj : |
(* | The scalar $c_j$ which is proportional to the inverse of the step size $\alpha$ . | *) |
}
Internal data required to construct the current nonlinear implicit system within a nonlinear solver.
val get_nonlin_system_data : ('d, 'k) session -> 'd nonlin_system_dataGives direct access to the internal data required to construct the
current nonlinear system within a nonlinear solver. This
function should be called inside the nonlinear system function.
If the nonlinear solver uses the lsetup or lsolve functions, then
the nonlinear solver system function must fill the yyn, ypn, and res
vectors with, respectively:
$\mathit{yyn} = y_{\mathit{pred}} + y_{\mathit{cor}}$ ,
$\mathit{ypn} = \dot{y}_{\mathit{pred}} + \alpha\dot{y}_{\mathit{cor}}$ ,
and
$\mathit{res} = F(t_n, y_n, \dot{y}_n)$ where
$y_{\mathit{cor}}$ is the
first argument of the nonlinear solver system function. Within a custom
linear solver, then the vectors yyn, ypn, and res are only current
after an evaluation of the nonlinear system function.
val compute_y : ('d, 'k) session ->
ycor:('d, 'k) Nvector.t -> y:('d, 'k) Nvector.t -> unitComputes the current $y$ vector from a correction vector.
val compute_yp : ('d, 'k) session ->
ycor:('d, 'k) Nvector.t -> yp:('d, 'k) Nvector.t -> unitComputes the current $\dot{y}$ vector from a correction vector.
exception IllInput
Raised on missing or illegal solver inputs. Also raised if an element
of the error weight vector becomes zero during time stepping, or the
linear solver initialization function failed, or a root was found both at
t and very near t.
exception TooMuchWork
The requested time could not be reached in mxstep internal steps.
See Ida.set_max_num_steps
exception TooMuchAccuracy
The requested accuracy could not be satisfied.
exception ErrFailure
Too many error test failures within a step. See Ida.set_max_err_test_fails.
exception ConvergenceFailure
Too many convergence test failures within a step,
or Newton convergence failed. See Ida.set_max_conv_fails.
exception LinearInitFailure
Linear solver initialization failed.
exception LinearSetupFailure of exn option
Linear solver setup failed in an unrecoverable manner.
If possible, the exception in the underlying linear solver is specified.
It is typically one of
Sundials_LinearSolver.ZeroInDiagonal,
Sundials_LinearSolver.PSetFailure,
or
Sundials_LinearSolver.PackageFailure.
exception LinearSolveFailure of exn option
Linear solver solution failed in an unrecoverable manner.
If possible, the exception in the underlying linear solver is specified.
It is typically one of
Sundials_LinearSolver.ZeroInDiagonal,
Sundials_LinearSolver.ATimesFailure,
Sundials_LinearSolver.PSolveFailure,
Sundials_LinearSolver.GSFailure,
Sundials_LinearSolver.QRSolFailure,
or
Sundials_LinearSolver.PackageFailure.
exception NonlinearSolverFailure
The nonlinear solver failed in a general way.
exception NonlinearInitFailure
Nonlinear solver initialization failed.
exception NonlinearSetupFailure
Nonlinear solver setup failed in an unrecoverable manner.
exception NonlinearSetupRecoverable
Nonlinear solver setup failed in a recoverable manner.
exception ResFuncFailure
The residual function failed in an unrecoverable manner.
exception FirstResFuncFailure
The residual function had a recoverable error when first called.
exception RepeatedResFuncFailure
Too many convergence test failures, or unable to estimate the initial step size, due to repeated recoverable errors in the residual function.
exception RootFuncFailure
The rootfinding function failed.
exception ConstraintFailure
No solution satisfying the inequality constraints could be found.
exception LinesearchFailure
Linesearch could not find a solution with a step larger than steptol in weighted RMS norm.
exception NoRecovery
A recoverable error occurred in a callback but no recovery was possible.
exception BadEwt
A component of the error weight vector, either for the input value or a corrected value, is zero.
exception BadK
Raised by Ida.get_dky for invalid order values.
exception BadT
Raised by Ida.get_dky for invalid time values.
exception IdNotSet
Variable ids are required but not set. See Ida.set_id.
exception VectorOpErr
A fused vector operation failed.