Index of values

A
abs [Nvector.NVECTOR_OPS]

abs x z calculates z = abs(x).

abs [Nvector.Ops]

abs x z calculates z = abs(x).

abscissae [Arkode.MRIStep.Coupling]

An array of slow abscissae $c^S$ .

add_forcing [Arkode.MRIStep.InnerStepper]

Computes the forcing term at the given time and adds it to the given inner (fast) right-hand-side vector.

add_identity [Sundials_Matrix.ArrayBand]

Increment a square matrix by the identity matrix.

add_identity [Sundials_Matrix.ArrayDense]

Increments a square matrix by the identity matrix.

add_tracing [Nvector_custom]

Add tracing to custom operations.

addconst [Nvector.NVECTOR_OPS]

addconst x b z calculates z = x + b.

addconst [Nvector.Ops]

addconst x b z calculates z = x + b.

algebraic [Ida.VarId]

The constant 0.0.

append [Sundials_ROArray]

Create a new immutable array by joining two existing ones.

array_nvec_ops [Nvector_array.ARRAY_NVECTOR]

The set of nvector operations on an array.

arrayband [Sundials_Matrix]

By default, band n returns an n by n band matrix with all bandwidths equal to 2 and all values initialized to 0.0.

arraydense [Sundials_Matrix]

By default, arraydense n returns an n by n dense matrix with all elements initialized to 0.0.

assert_not_oconvtestfn [Sundials_NonlinearSolver.Sens]

Ignore the nvector type argument in a convtestfn.

assert_not_oconvtestfn [Sundials_NonlinearSolver]

Ignore the nvector type argument in a convtestfn.

B
backward_normal [Idas.Adjoint]

Integrates a backward ODE system over an interval.

backward_normal [Cvodes.Adjoint]

Integrates a backward ODE system over an interval.

backward_one_step [Idas.Adjoint]

Like Idas.Adjoint.backward_normal but returns after one internal solver step.

backward_one_step [Cvodes.Adjoint]

Like Cvodes.Adjoint.backward_normal but returns after one internal solver step.

band [Sundials_LinearSolver.Direct]

Creates a direct linear solver on banded matrices.

band [Sundials_Matrix]

By default, band n returns an n by n band matrix with all bandwidths equal to 2 and all values initialized to 0.0.

big_real [Sundials_Config]

The largest value representable as a real.

blit [Sundials_Matrix.ArrayBand]

blit ~src ~dst copies the contents of src into dst.

blit [Sundials_Matrix.ArrayDense]

blit ~src ~dst copies the contents of src into dst.

blit [Sundials_Matrix.Sparse]

blit ~src ~dst copies the contents of src into dst.

blit [Sundials_Matrix.Band]

blit ~src ~dst copies the contents of src into dst.

blit [Sundials_Matrix.Dense]

blit ~src ~dst copies the contents of src into dst.

blit [Sundials_Matrix]

blit ~src ~dst copies the contents of src into dst.

blit [Sundials.RootDirs]

Copy the first array into the second one.

blit [Sundials_RealArray2]

Copy the first array into the second one.

blit [Sundials_RealArray]

Copy the first array into the second one.

blitn [Sundials.RootDirs]

blitn ~src ?spos ~dst ?dpos len copies len elements of src at offset spos to dst at offset dpos.

blitn [Sundials_RealArray]

blitn ~src ?spos ~dst ?dpos len copies len elements of src at offset spos to dst at offset dpos.

C
calc_ic [Idas.Adjoint]

Computes the algebraic components of the initial state and the differential components of the derivative vectors for certain index-one problems.

calc_ic_sens [Idas.Adjoint]

Computes the algebraic components of the initial state and the differential components of the derivative vectors for certain index-one problems.

calc_ic_y [Idas.Sensitivity]

Identical to Ida.calc_ic_y, but with the possibility of filling s with the corrected sensitivity values.

calc_ic_y [Ida]

Computes the initial state vector for certain index-one problems.

calc_ic_ya_yd' [Idas.Sensitivity]

Identical to Ida.calc_ic_ya_yd', but with the possibility of filling s and s' with the corrected sensitivity and sensitivity derivative values.

calc_ic_ya_yd' [Ida]

Computes the algebraic components of the initial state and derivative vectors for certain index-one problems.

check [Nvector]

check v1 v2 checks v1 and v2 for compatibility.

check_ark_order [Arkode.ButcherTable]

Determines the analytic order of accuracy for a pair of Butcher tables.

check_order [Arkode.ButcherTable]

Determines the analytic order of accuracy for a Butcher table.

classical_gs [Sundials_LinearSolver.Iterative.Algorithms]

Performs a classical Gram-Schmidt orthogonalization.

clear_constraints [Idas.Adjoint]

Disables constraint checking.

clear_constraints [Cvodes.Adjoint]

Disables constraint checking.

clear_constraints [Ida]

Disables constraint checking.

clear_constraints [Cvode]

Disables constraint checking.

clear_diagnostics [Arkode.MRIStep]

Do not write step adaptivity or solver diagnostics of a file.

clear_diagnostics [Arkode.ERKStep]

Do not write step adaptivity or solver diagnostics of a file.

clear_diagnostics [Arkode.ARKStep]

Do not write step adaptivity or solver diagnostics of a file.

clear_err_handler_fn [Arkode.MRIStep]

Restores the default error handling function.

clear_err_handler_fn [Arkode.ERKStep]

Restores the default error handling function.

clear_err_handler_fn [Arkode.ARKStep]

Restores the default error handling function.

clear_err_handler_fn [Ida]

Restores the default error handling function.

clear_err_handler_fn [Kinsol]

Restores the default error handling function.

clear_err_handler_fn [Cvode]

Restores the default error handling function.

clear_info_handler_fn [Kinsol]

Restores the default information handling function.

clear_jac_times [Idas.Adjoint.Spils]

Remove a Jacobian-times-vector function and use the default implementation.

clear_jac_times [Cvodes.Adjoint.Spils]

Remove a Jacobian-times-vector function and use the default implementation.

clear_jac_times [Arkode.MRIStep.Spils]

Remove a Jacobian-times-vector function and use the default implementation.

clear_jac_times [Arkode.ARKStep.Spils]

Remove a Jacobian-times-vector function and use the default implementation.

clear_jac_times [Ida.Spils]

Remove a Jacobian-times-vector function and use the default implementation.

clear_jac_times [Kinsol.Spils]

Remove a Jacobian-times-vector function and use the default implementation.

clear_jac_times [Cvode.Spils]

Remove a Jacobian-times-vector function and use the default implementation.

clear_monitor_fn [Cvode]

Turns monitoring off.

clear_post_inner_fn [Arkode.MRIStep]

Clear the function called after each inner integration.

clear_postprocess_step_fn [Arkode.MRIStep]

Clear the post processing step function.

clear_postprocess_step_fn [Arkode.ERKStep]

Clear the post processing step function.

clear_postprocess_step_fn [Arkode.ARKStep]

Clear the post processing step function.

clear_pre_inner_fn [Arkode.MRIStep]

Clear the function called before each inner integration.

clear_stability_fn [Arkode.ERKStep]

Clears the problem-dependent function that estimates a stable time step size for the explicit portion of the ODE system.

clear_stability_fn [Arkode.ARKStep]

Clears the problem-dependent function that estimates a stable time step size for the explicit portion of the ODE system.

clear_stage_predict_fn [Arkode.MRIStep]

Clear the function called after the predictor algorithm.

clear_stage_predict_fn [Arkode.ARKStep]

Clear the function called after the predictor algorithm.

clone [Nvector_parallel]

Creates an nvector with a distinct underlying array but that shares the original global size and communicator.

clone [Nvector_array.ArrayOps]

Create a copy of an array.

clone [Nvector.NVECTOR_OPS]

Create a new, distinct vector from an existing one.

clone [Nvector.Ops]

Create a new, distinct vector from an existing one.

clone [Nvector]

Clone an nvector.

close [Sundials.Logfile]

Closes the given file.

col [Sundials_RealArray2]

col a j returns the jth column of a.

communicator [Nvector_mpiplusx]

Returns the communicator used for the nvector.

communicator [Nvector_mpimany]

Returns the communicator used for the nvector.

communicator [Nvector_parallel]

Returns the communicator used for the parallel nvector.

compare [Nvector.NVECTOR_OPS]

compare c x z calculates z(i) = if abs x(i) >= c then 1 else 0.

compare [Nvector.Ops]

compare c x z calculates z(i) = if abs x(i) >= c then 1 else 0.

compare_float [Sundials.Util]

Returns true if the relative difference of the two arguments is less than or equal to the tolerance.

compute_state [Cvodes.Sensitivity]

Computes the current sensitivity vector for all sensitivities using the stored prediction and the supplied correction vectors from the nonlinear solver.

compute_state [Arkode.MRIStep]

Computes the current stage state vector using the stored prediction and the supplied correction from the nonlinear solver.

compute_state [Arkode.ARKStep]

Computes the current stage state vector using the stored prediction and the supplied correction from the nonlinear solver.

compute_state [Cvode]

Computes the current stage state vector using the stored prediction and the supplied correction from the nonlinear solver.

compute_state1 [Cvodes.Sensitivity]

Computes the current sensitivity vector for the sensitivity at the given index using the stored prediction and the supplied correction vector from the nonlinear solver.

compute_y [Ida]

Computes the current $y$ vector from a correction vector.

compute_y_sens [Idas.Sensitivity]

Computes the sensitiviites from a correction vector.

compute_yp [Ida]

Computes the current $\dot{y}$ vector from a correction vector.

compute_yp_sens [Idas.Sensitivity]

Computes the sensitivity derivatives from a correction vector.

concat [Sundials_ROArray]

Create a new immutable array by concatenating a list of existing ones.

const [Nvector.NVECTOR_OPS]

const c z sets all of z to c.

const [Nvector.Ops]

const c z sets all of z to c.

constrmask [Nvector.NVECTOR_OPS.Local]

constrmask c x m calculates m(i) = Pi x(i) returning the conjunction.

constrmask [Nvector.NVECTOR_OPS]

constrmask c x m calculates m(i) = Pi x(i) returning the conjunction.

constrmask [Nvector.Ops.Local]

constrmask c x m calculates m(i) = Pi x(i) returning the conjunction.

constrmask [Nvector.Ops]

constrmask c x m calculates m(i) = Pi x(i) returning the conjunction.

constvectorarray [Nvector.NVECTOR_OPS]

constvectorarray c x sets all elements of the $n_v$ nvectors in x to c.

constvectorarray [Nvector.Ops]

constvectorarray c x sets all elements of the $n_v$ nvectors in x to c.

context [Nvector]

Returns the context used to create the nvector.

convert_ops [Nvector_custom.Any]

Adapt a set of nvector operations so that they work with a payload of type Nvector.gdata.

copy [Arkode.MRIStep.Coupling]

Create a copy of a given coupling table.

copy [Sundials.RootDirs]

copy n a returns an array with n elements, initialized from the contents of a.

copy [Sundials.Roots]

Creates a new array with the same contents as an existing one.

copy [Sundials_ROArray]

Copy an immutable array.

copy [Sundials_RealArray2]

Creates a new array with the same contents as an existing one.

copy [Sundials_RealArray]

Creates a new array with the same contents as an existing one.

copy_to_csc [Sundials_Matrix.Sparse]

Create a new sparse matrix in CSC format from the contents of an existing one in CSR format.

copy_to_csr [Sundials_Matrix.Sparse]

Create a new sparse matrix in CSR format from the contents of an existing one in CSC format.

create [Sundials_Matrix.ArrayBand]

create smu ml n returns an uninitialized n by n band matrix with storage upper bandwidth smu and lower half-bandwidth ml.

create [Sundials_Matrix.ArrayDense]

create m n returns an uninitialized m by n array dense matrix.

create [Sundials_Matrix.Band]

Returns an uninitialized band matrix with the given Sundials_Matrix.Band.dimensions.

create [Sundials_Matrix.Dense]

create m n returns an uninitialized m by n dense matrix.

create [Sundials.RootDirs]

create n returns an array with n elements each set to IncreasingOrDecreasing.

create [Sundials.Roots]

create n returns an array with n elements each set to NoRoot.

create [Sundials_LintArray]

create n returns an uninitialized array with n elements.

create [Sundials_RealArray2]

create nr nc returns an uninitialized array with nr rows and nc columns.

create [Sundials_RealArray]

create n returns an uninitialized array with n elements.

D
data [Sundials_NonlinearSolver.Senswrapper]

Creates an array to the nvector data within a senswrapper.

default [Sundials.Context]

The default context when creating values.

default_tolerances [Arkode.Common]

A default relative tolerance of 1.0e-4 and absolute tolerance of 1.0e-9.

default_tolerances [Ida]

A default relative tolerance of 1.0e-4 and absolute tolerance of 1.0e-8.

default_tolerances [Cvode]

A default relative tolerance of 1.0e-4 and absolute tolerance of 1.0e-8.

dense [Sundials_LinearSolver.Direct]

Creates a direct linear solver on dense matrices.

dense [Sundials_Matrix]

By default, dense n returns an n by n dense matrix with all elements initialized to 0.0.

detected [Sundials.Roots]

Returns true only if the specified element is either Rising or Falling.

differential [Ida.VarId]

The constant 1.0.

dims [Sundials_Matrix.ArrayBand]

Returns the dimensions of an array band matrix.

dims [Sundials_Matrix.Sparse]

nnz, np = dims m returns the allocated number of nonzeros nnz and of the number np of columns (for csc) or rows (for csr) in the matrix m.

dims [Sundials_Matrix.Band]

Returns the dimensions of a band matrix.

div [Nvector.NVECTOR_OPS]

div x y z calculates z = x / y (pointwise).

div [Nvector.Ops]

div x y z calculates z = x / y (pointwise).

dotprod [Nvector.NVECTOR_OPS.Local]

dotprod x y returns the dot product of x and y.

dotprod [Nvector.NVECTOR_OPS]

dotprod x y returns the dot product of x and y.

dotprod [Nvector.Ops.Local]

dotprod x y returns the dot product of x and y.

dotprod [Nvector.Ops]

dotprod x y returns the dot product of x and y.

dotprodmulti [Nvector.NVECTOR_OPS.Local]

dotprodmulti x y d calculates d(j) = x(0)*y(j)(0) + ... + x(n-1)*y(j)(n-1) for the nl task-local elements in the nvectors and where j ranges over the array elements.

dotprodmulti [Nvector.NVECTOR_OPS]

dotprodmulti x y d calculates the dot product of x with the $n_v$ elements of y.

dotprodmulti [Nvector.Ops.Local]

dotprodmulti x yy d calculates the task-local portion of the dot product of a vector x with vectors yy.

dotprodmulti [Nvector.Ops]

dotprodmulti x y d calculates the dot product of x with the $n_v$ elements of y.

dotprodmulti_allreduce [Nvector.NVECTOR_OPS.Local]

dotprodmulti_allreduce x d combines the task-local portions of the dot product of a vector x with nv vectors.

dotprodmulti_allreduce [Nvector.Ops.Local]

dotprodmulti_allreduce x d combines the task-local portions of the dot product of a vector x with an array of vectors.

E
embedding_order [Arkode.MRIStep.Coupling]

The accuracy order of the embedding.

empty [Sundials_LintArray]

An array with no elements.

empty [Sundials_RealArray2]

An array with no elements.

empty [Sundials_RealArray]

An array with no elements.

enable [Nvector_pthreads.Any]

Selectively enable or disable fused and array operations.

enable [Nvector_pthreads]

Selectively enable or disable fused and array operations.

enable [Nvector_openmp.Any]

Selectively enable or disable fused and array operations.

enable [Nvector_openmp]

Selectively enable or disable fused and array operations.

enable [Nvector_mpiplusx.Any]

Selectively enable or disable fused and array operations.

enable [Nvector_mpiplusx]

Selectively enable or disable fused and array operations.

enable [Nvector_mpimany.Any]

Selectively enable or disable fused and array operations.

enable [Nvector_mpimany]

Selectively enable or disable fused and array operations.

enable [Nvector_parallel.Any]

Selectively enable or disable fused and array operations.

enable [Nvector_parallel]

Selectively enable or disable fused and array operations.

enable [Nvector_array.ARRAY_NVECTOR]

Selectively enable or disable fused and array operations.

enable [Nvector_custom]

Selectively enable or disable fused and array operations.

enable [Nvector_many.Any]

Selectively enable or disable fused and array operations.

enable [Nvector_many]

Selectively enable or disable fused and array operations.

enable [Nvector_serial.Any]

Selectively enable or disable fused and array operations.

enable [Nvector_serial]

Selectively enable or disable fused and array operations.

enable [Nvector.NVECTOR]

Selectively enable or disable fused and array operations.

enabled [Sundials.Profiler]

Indicates whether the underlying library was built with profiling enabled.

evolve_normal [Arkode.MRIStep]

Integrates an ODE system over an interval.

evolve_normal [Arkode.ERKStep]

Integrates an ODE system over an interval.

evolve_normal [Arkode.ARKStep]

Integrates an ODE system over an interval.

evolve_one_step [Arkode.MRIStep]

Like Arkode.MRIStep.evolve_normal but returns after one internal solver step.

evolve_one_step [Arkode.ERKStep]

Like Arkode.ERKStep.evolve_normal but returns after one internal solver step.

evolve_one_step [Arkode.ARKStep]

Like Arkode.ARKStep.evolve_normal but returns after one internal solver step.

exists [Sundials.Roots]

true if any elements are equal to Rising or Falling.

exists [Sundials_ROArray]

Returns true only if a predicate is true for at least one element of an immutable array.

explicit [Arkode.MRIStep]

Explicit slow right-hand-side function only.

explicit [Arkode.ARKStep]

Explicit Runge-Kutta (ERK) solution of non-stiff problem.

explicit_coupling_matrices [Arkode.MRIStep.Coupling]

The set of explicit coupling matrices $\Omega^{{k}}$ as nmat * stages * stages floats.

F
falling [Sundials.Roots]

Returns true only if the specified element is Falling.

fill [Nvector_array.ArrayOps]

Fill the array with a value.

fill [Sundials.RootDirs]

fill_all a x sets the values of a to x everywhere.

fill [Sundials.Roots]

fill a x sets all elements in a to x.

fill [Sundials_RealArray2]

fill a c sets all elements of a to the constant c.

fill [Sundials_RealArray]

fill a c sets elements of a to the constant c.

finish [Sundials.Profiler]

Ends timing the region indicated by the given name.

floata [Sundials.Util]

Returns the bit-level representation of a float in hexadecimal as a string.

flush [Sundials.Logfile]

Flushes the given file.

fold_left [Sundials_ROArray]

Fold a function across the elements of an immutable array from the 0th element upward.

fold_left [Sundials_RealArray]

fold_left f b a returns f (f (f b a.{0}) a.{1}) ...).

fold_left2 [Sundials_ROArray]

Fold a function across the elements of two immutable arrays from the 0th elements upward.

fold_left3 [Sundials_ROArray]

Fold a function across the elements of three immutable arrays from the 0th elements upward.

fold_right [Sundials_ROArray]

Fold a function across the elements of an immutable array from the last element downward.

fold_right [Sundials_RealArray]

fold_right f b a returns (f ... (f a.{n-2} (f a.{n-1} b))).

for_all [Sundials_ROArray]

Returns true only if a predicate is true for all elements of an immutable array.

for_all2 [Sundials_ROArray]

Returns true only if a predicate is true for all paired elements of two immutable arrays.

format_float [Sundials.Util]

format_float fmt f formats f according to the format string fmt.

forward_normal [Idas.Adjoint]

Integrates the forward problem over an interval and saves checkpointing data.

forward_normal [Cvodes.Adjoint]

Integrates the forward problem over an interval and saves checkpointing data.

forward_one_step [Idas.Adjoint]

Integrates the forward problem over an interval and saves checkpointing data.

forward_one_step [Cvodes.Adjoint]

Integrates the forward problem over an interval and saves checkpointing data.

from_arkstep [Arkode.MRIStep.InnerStepper]

Wrap an Arkode.ARKStep.session for use as an inner stepper.

from_array [Sundials_ROArray]

Copy a mutable array into an immutable one.

from_band [Sundials_Matrix.Sparse]

Creates a sparse matrix in the specified format from a band matrix by copying all values of magnitude greater than the given tolerance.

from_dense [Sundials_Matrix.Sparse]

Creates a sparse matrix in in the specified format from a dense matrix by copying all values of magnitude greater than the given tolerance.

G
gbtrf [Sundials_Matrix.ArrayBand]

gbtrf a p performs the LU factorization of a with partial pivoting according to p.

gbtrs [Sundials_Matrix.ArrayBand]

gbtrs a p b finds the solution of ax = b using LU factorization.

geq_zero [Sundials.Constraint]

The constant 1.0.

geqrf [Sundials_Matrix.ArrayDense]

geqrf a beta work performs the QR factorization of a.

get [Idas.Adjoint.Quadrature]

Returns the backward quadrature solutions and time reached after a successful solver step.

get [Idas.Adjoint]

Fills the given vectors, yb and yb', with the solution of the backward DAE problem at the returned time, interpolating if necessary.

get [Idas.Sensitivity.Quadrature]

Returns the quadrature sensitivity solutions and time reached after a successful solver step.

get [Idas.Sensitivity]

Returns the sensitivity solution vectors after a successful solver step.

get [Idas.Quadrature]

Returns the quadrature solutions and time reached after a successful solver step.

get [Cvodes.Adjoint.Quadrature]

Returns the backward quadrature solutions and time reached after a successful solver step.

get [Cvodes.Adjoint]

Fills the given vector with the solution of the backward ODE problem at the returned time, interpolating if necessary.

get [Cvodes.Sensitivity.Quadrature]

Returns the quadrature sensitivity solutions and time reached after a successful solver step.

get [Cvodes.Sensitivity]

Returns the sensitivity solution vectors after a successful solver step.

get [Cvodes.Quadrature]

Returns the quadrature solutions and time reached after a successful solver step.

get [Nvector_array.ArrayOps]

Return the value from the array at the given index.

get [Sundials_Matrix.ArrayBand]

get a i j returns the value at row i and column j of a.

get [Sundials_Matrix.ArrayDense]

get a i j returns the value at row i and column j of a.

get [Sundials_Matrix.Sparse]

r, v = get a idx returns the row/column r and value v at the idxth position.

get [Sundials_Matrix.Band]

get a i j returns the value at row i and column j of a.

get [Sundials_Matrix.Dense]

get a i j returns the value at row i and column j of a.

get [Sundials.RootDirs]

get r i returns the ith element of r.

get [Sundials.Roots]

get r i returns the ith element of r.

get [Sundials_ROArray]

Return the element at the given index.

get [Sundials_RealArray2]

get a i j returns the value at row i and column j of a.

get [Sundials_RealArray]

get a i returns the ith element of a.

get1 [Idas.Sensitivity.Quadrature]

Returns a single quadrature sensitivity vector after a successful solver step.

get1 [Idas.Sensitivity]

Returns a single sensitivity solution vector after a successful solver step.

get1 [Cvodes.Sensitivity.Quadrature]

Returns a single quadrature sensitivity vector after a successful solver step.

get1 [Cvodes.Sensitivity]

Returns a single sensitivity solution vector after a successful solver step.

get_actual_init_step [Idas.Adjoint]

Returns the the value of the integration step size used on the first step.

get_actual_init_step [Cvodes.Adjoint]

Returns the the value of the integration step size used on the first step.

get_actual_init_step [Arkode.ERKStep]

Returns the the value of the integration step size used on the first step.

get_actual_init_step [Arkode.ARKStep]

Returns the the value of the integration step size used on the first step.

get_actual_init_step [Ida]

Returns the the value of the integration step size used on the first step.

get_actual_init_step [Cvode]

Returns the the value of the integration step size used on the first step.

get_col [Sundials_Matrix.Sparse]

get_col a j returns the data index of column j.

get_colval [Sundials_Matrix.Sparse]

c = get_colval a idx returns the column c at the idxth position.

get_communicator [Nvector_parallel]

Return the communicator associated with any nvector.

get_cur_iter [Sundials_NonlinearSolver]

Returns the iteration index of the current nonlinear solve.

get_current_butcher_table [Arkode.ERKStep]

Returns the Butcher table in use by the solver.

get_current_butcher_tables [Arkode.ARKStep]

Returns the implicit and explicit Butcher tables in use by the solver.

get_current_cj [Ida]

Returns the scalar $c_j$ , which is proportional to the inverse of the step size.

get_current_coupling [Arkode.MRIStep]

Returns the coupling table currently in use by the solver.

get_current_gamma [Arkode.MRIStep]

Returns the current value of $\gamma$ .

get_current_gamma [Arkode.ARKStep]

Returns the current value of $\gamma$ .

get_current_gamma [Cvode]

Returns the current value of $\gamma$ .

get_current_order [Idas.Adjoint]

Returns the integration method order to be used on the next internal step.

get_current_order [Cvodes.Adjoint]

Returns the integration method order to be used on the next internal step.

get_current_order [Ida]

Returns the integration method order to be used on the next internal step.

get_current_order [Cvode]

Returns the integration method order to be used on the next internal step.

get_current_sens_solve_index [Cvodes.Sensitivity]

Returns the index of the current sensitivity solve when using the Staggered1 method.

get_current_state [Arkode.MRIStep]

Returns the current state vector.

get_current_state [Arkode.ARKStep]

Returns the current state vector.

get_current_state [Cvode]

Returns the current state vector.

get_current_state_sens [Cvodes.Sensitivity]

Returns the current sensitivity state vector array.

get_current_step [Idas.Adjoint]

Returns the integration step size to be attempted on the next internal step.

get_current_step [Cvodes.Adjoint]

Returns the integration step size to be attempted on the next internal step.

get_current_step [Arkode.ERKStep]

Returns the integration step size to be attempted on the next internal step.

get_current_step [Arkode.ARKStep]

Returns the integration step size to be attempted on the next internal step.

get_current_step [Ida]

Returns the integration step size to be attempted on the next internal step.

get_current_step [Cvode]

Returns the integration step size to be attempted on the next internal step.

get_current_time [Idas.Adjoint]

Returns the the current internal time reached by the solver.

get_current_time [Cvodes.Adjoint]

Returns the the current internal time reached by the solver.

get_current_time [Arkode.MRIStep]

Returns the the current internal time reached by the solver.

get_current_time [Arkode.ERKStep]

Returns the the current internal time reached by the solver.

get_current_time [Arkode.ARKStep]

Returns the the current internal time reached by the solver.

get_current_time [Ida]

Returns the the current internal time reached by the solver.

get_current_time [Cvode]

Returns the the current internal time reached by the solver.

get_current_y [Ida]

Returns the current $y$ vector.

get_current_y_sens [Idas.Sensitivity]

Returns the current sensitivity vector array.

get_current_yp [Ida]

Returns the current $\dot{y}$ vector.

get_current_yp_sens [Idas.Sensitivity]

Returns the derivative of the current sensitivity vector array.

get_data [Sundials_Matrix.Sparse]

v = get_data a idx returns the value v at the idxth position.

get_dky [Idas.Adjoint]

Returns the interpolated solution or derivatives.

get_dky [Idas.Sensitivity.Quadrature]

Returns the interpolated solution or derivatives of the quadrature sensitivity solution.

get_dky [Idas.Sensitivity]

Returns the interpolated solution or derivatives of the sensitivity solution vectors.

get_dky [Idas.Quadrature]

Returns the interpolated solution or derivatives of quadrature variables.

get_dky [Cvodes.Adjoint]

Returns the interpolated solution or derivatives.

get_dky [Cvodes.Sensitivity.Quadrature]

Returns the interpolated solution or derivatives of the quadrature sensitivity solution.

get_dky [Cvodes.Sensitivity]

Returns the interpolated solution or derivatives of the sensitivity solution vectors.

get_dky [Cvodes.Quadrature]

Returns the interpolated solution or derivatives of quadrature variables.

get_dky [Arkode.MRIStep]

Returns the interpolated solution or derivatives.

get_dky [Arkode.ERKStep]

Returns the interpolated solution or derivatives.

get_dky [Arkode.ARKStep]

Returns the interpolated solution or derivatives.

get_dky [Ida]

Returns the interpolated solution or derivatives.

get_dky [Cvode]

Returns the interpolated solution or derivatives.

get_dky1 [Idas.Sensitivity.Quadrature]

Returns the interpolated solution or derivatives of a single quadrature sensitivity solution vector.

get_dky1 [Idas.Sensitivity]

Returns the interpolated solution or derivatives of a single sensitivity solution vector.

get_dky1 [Cvodes.Sensitivity.Quadrature]

Returns the interpolated solution or derivatives of a single quadrature sensitivity solution vector.

get_dky1 [Cvodes.Sensitivity]

Returns the interpolated solution or derivatives of a single sensitivity solution vector.

get_err_weights [Idas.Adjoint.Quadrature]

Returns the quadrature error weights at the current time.

get_err_weights [Idas.Adjoint]

Returns the solution error weights at the current time.

get_err_weights [Idas.Sensitivity.Quadrature]

Returns the quadrature error weights at the current time.

get_err_weights [Idas.Sensitivity]

Returns the sensitivity error weights at the current time.

get_err_weights [Idas.Quadrature]

Returns the quadrature error weights at the current time.

get_err_weights [Cvodes.Adjoint.Quadrature]

Returns the quadrature error weights at the current time.

get_err_weights [Cvodes.Adjoint]

Returns the solution error weights at the current time.

get_err_weights [Cvodes.Sensitivity.Quadrature]

Returns the quadrature error weights at the current time.

get_err_weights [Cvodes.Sensitivity]

Returns the sensitivity error weights at the current time.

get_err_weights [Cvodes.Quadrature]

Returns the quadrature error weights at the current time.

get_err_weights [Arkode.MRIStep]

Returns the solution error weights at the current time.

get_err_weights [Arkode.ERKStep]

Returns the solution error weights at the current time.

get_err_weights [Arkode.ARKStep]

Returns the solution error weights at the current time.

get_err_weights [Ida]

Returns the solution error weights at the current time.

get_err_weights [Cvode]

Returns the solution error weights at the current time.

get_est_local_errors [Idas.Adjoint]

Returns the vector of estimated local errors.

get_est_local_errors [Cvodes.Adjoint]

Returns the vector of estimated local errors.

get_est_local_errors [Arkode.ERKStep]

Returns the vector of estimated local errors.

get_est_local_errors [Arkode.ARKStep]

Returns the vector of estimated local errors.

get_est_local_errors [Ida]

Returns the vector of estimated local errors.

get_est_local_errors [Cvode]

Returns the vector of estimated local errors.

get_forcing_data [Arkode.MRIStep.InnerStepper]

Return the data necessary to compute the forcing term.

get_func_norm [Kinsol]

Returns the scaled Euclidiean l2 norm of the nonlinear system function $F(u)$ evaluated at the current iterate.

get_id [Nvector]

Returns the vector type identifier.

get_id [Sundials_LinearSolver]

Returns the identifier of the linear solver.

get_id [Sundials_Matrix]

Return the internal type identifier of a matrix.

get_integrator_stats [Idas.Adjoint]

Returns the integrator statistics as a group.

get_integrator_stats [Cvodes.Adjoint]

Returns the integrator statistics as a group.

get_integrator_stats [Ida]

Returns the integrator statistics as a group.

get_integrator_stats [Cvode]

Returns the integrator statistics as a group.

get_last_flag [Sundials_LinearSolver]

Returns an indication of the last error encountered by a linear solver.

get_last_order [Idas.Adjoint]

Returns the integration method order used during the last internal step.

get_last_order [Cvodes.Adjoint]

Returns the integration method order used during the last internal step.

get_last_order [Ida]

Returns the integration method order used during the last internal step.

get_last_order [Cvode]

Returns the integration method order used during the last internal step.

get_last_step [Idas.Adjoint]

Returns the integration step size taken on the last internal step.

get_last_step [Cvodes.Adjoint]

Returns the integration step size taken on the last internal step.

get_last_step [Arkode.MRIStep]

Returns the integration step size taken on the last successful internal step.

get_last_step [Arkode.ERKStep]

Returns the integration step size taken on the last successful internal step.

get_last_step [Arkode.ARKStep]

Returns the integration step size taken on the last successful internal step.

get_last_step [Ida]

Returns the integration step size taken on the last internal step.

get_last_step [Cvode]

Returns the integration step size taken on the last internal step.

get_linear_solver_stats [Cvode]

Returns linear solver statistics as a group.

get_nonlin_solv_stats [Idas.Adjoint]

Returns both the numbers of nonlinear iterations performed nniters and nonlinear convergence failures nncfails.

get_nonlin_solv_stats [Idas.Sensitivity]

Returns both the numbers of nonlinear iterations performed nniters and nonlinear convergence failures nncfails during sensitivity calculations.

get_nonlin_solv_stats [Cvodes.Adjoint]

Returns both the numbers of nonlinear iterations performed nniters and nonlinear convergence failures nncfails.

get_nonlin_solv_stats [Cvodes.Sensitivity]

Returns both the numbers of nonlinear iterations performed nniters and nonlinear convergence failures nncfails during sensitivity calculations.

get_nonlin_solv_stats [Arkode.MRIStep]

Returns both the numbers of nonlinear iterations performed nniters and nonlinear convergence failures nncfails.

get_nonlin_solv_stats [Arkode.ARKStep]

Returns both the numbers of nonlinear iterations performed nniters and nonlinear convergence failures nncfails.

get_nonlin_solv_stats [Ida]

Returns both the numbers of nonlinear iterations performed nniters and nonlinear convergence failures nncfails.

get_nonlin_solv_stats [Cvode]

Returns both the numbers of nonlinear iterations performed nniters and nonlinear convergence failures nncfails.

get_nonlin_system_data [Idas.Sensitivity]

Gives direct access to the internal data required to construct the current nonlinear system within a nonlinear solver.

get_nonlin_system_data [Cvodes.Sensitivity]

Gives direct access to the internal data required to construct the current nonlinear system within a nonlinear solver.

get_nonlin_system_data [Arkode.MRIStep]

Gives direct access to the internal data required to construct the current nonlinear implicit system within a nonlinear solver.

get_nonlin_system_data [Arkode.ARKStep]

Gives direct access to the internal data required to construct the current nonlinear implicit system within a nonlinear solver.

get_nonlin_system_data [Ida]

Gives direct access to the internal data required to construct the current nonlinear system within a nonlinear solver.

get_nonlin_system_data [Cvode]

Gives direct access to the internal data required to construct the current nonlinear system within a nonlinear solver.

get_num_acc_steps [Arkode.ERKStep]

Returns the cumulative number of accuracy-limited steps taken by the solver.

get_num_acc_steps [Arkode.ARKStep]

Returns the cumulative number of accuracy-limited steps taken by the solver.

get_num_backtrack_ops [Ida]

Returns the number of backtrack operations during Ida.calc_ic_ya_yd' or Ida.calc_ic_y.

get_num_backtrack_ops [Kinsol]

Returns the number of backtrack operations (step length adjustments) performed by the line search algorithm.

get_num_beta_cond_fails [Kinsol]

Returns the number of beta-condition failures.

get_num_constr_fails [Arkode.ERKStep]

Returns the cumulative number of test failures.

get_num_constr_fails [Arkode.ARKStep]

Returns the cumulative number of test failures.

get_num_conv_fails [Arkode.ARKStep.Mass.Spils]

Returns the cumulative number of linear convergence failures.

get_num_conv_fails [Sundials_NonlinearSolver]

Returns the number of nonlinear solver convergence failures in the most recent solve.

get_num_err_test_fails [Idas.Adjoint.Quadrature]

Returns the number of local error test failures due to quadrature variables.

get_num_err_test_fails [Idas.Adjoint]

Returns the number of local error test failures that have occurred.

get_num_err_test_fails [Idas.Sensitivity.Quadrature]

Returns the number of local error test failures due to quadrature variables.

get_num_err_test_fails [Idas.Sensitivity]

Returns the number of local error test failures for the sensitivity variables that have occurred.

get_num_err_test_fails [Idas.Quadrature]

Returns the number of local error test failures that have occurred due to quadrature variables.

get_num_err_test_fails [Cvodes.Adjoint.Quadrature]

Returns the number of local error test failures due to quadrature variables.

get_num_err_test_fails [Cvodes.Adjoint]

Returns the number of local error test failures that have occurred.

get_num_err_test_fails [Cvodes.Sensitivity.Quadrature]

Returns the number of local error test failures due to quadrature variables.

get_num_err_test_fails [Cvodes.Sensitivity]

Returns the number of local error test failures for the sensitivity variables that have occurred.

get_num_err_test_fails [Cvodes.Quadrature]

Returns the number of local error test failures that have occurred due to quadrature variables.

get_num_err_test_fails [Arkode.ERKStep]

Returns the number of local error test failures that have occurred.

get_num_err_test_fails [Arkode.ARKStep]

Returns the number of local error test failures that have occurred.

get_num_err_test_fails [Ida]

Returns the number of local error test failures that have occurred.

get_num_err_test_fails [Cvode]

Returns the number of local error test failures that have occurred.

get_num_exp_steps [Arkode.ERKStep]

Returns the cumulative number of stability-limited steps taken by the solver.

get_num_exp_steps [Arkode.ARKStep]

Returns the cumulative number of stability-limited steps taken by the solver.

get_num_func_evals [Kinsol]

Returns the number of evaluations of the system function.

get_num_g_evals [Arkode.MRIStep]

Returns the cumulative number of calls made to the user-supplied root function g.

get_num_g_evals [Arkode.ERKStep]

Returns the cumulative number of calls made to the user-supplied root function g.

get_num_g_evals [Arkode.ARKStep]

Returns the cumulative number of calls made to the user-supplied root function g.

get_num_g_evals [Ida]

Returns the cumulative number of calls made to the user-supplied root function g.

get_num_g_evals [Cvode]

Returns the cumulative number of calls made to the user-supplied root function g.

get_num_gfn_evals [Idas_bbd]

Returns the number of calls to the right-hand side function due to finite difference banded Jacobian approximation in the setup function.

get_num_gfn_evals [Ida_bbd]

Returns the number of calls to the right-hand side function due to finite difference banded Jacobian approximation in the setup function.

get_num_gfn_evals [Cvodes_bbd]

Returns the number of calls to the right-hand side function due to finite difference banded Jacobian approximation in the setup function.

get_num_gfn_evals [Cvode_bbd]

Returns the number of calls to the right-hand side function due to finite difference banded Jacobian approximation in the setup function.

get_num_gfn_evals [Arkode_bbd]

Returns the number of calls to the right-hand side function due to finite difference banded Jacobian approximation in the setup function.

get_num_gfn_evals [Kinsol_bbd]

Returns the number of calls to the right-hand side function due to finite difference banded Jacobian approximation in the setup function.

get_num_iters [Sundials_NonlinearSolver]

Returns the number of nonlinear solver iterations in the most recent solve.

get_num_iters [Sundials_LinearSolver]

The number of linear iterations performed in the last Sundials_LinearSolver.solve call.

get_num_jac_evals [Idas.Adjoint.Dls]

Returns the number of calls made by a direct linear solver to the Jacobian approximation function.

get_num_jac_evals [Cvodes.Adjoint.Dls]

Returns the number of calls made by a direct linear solver to the Jacobian approximation function.

get_num_jac_evals [Arkode.MRIStep.Dls]

Returns the number of calls made by a direct linear solver to the Jacobian approximation function.

get_num_jac_evals [Arkode.ARKStep.Dls]

Returns the number of calls made by a direct linear solver to the Jacobian approximation function.

get_num_jac_evals [Ida.Dls]

Returns the number of calls made by a direct linear solver to the Jacobian approximation function.

get_num_jac_evals [Kinsol.Dls]

Returns the number of calls made by a direct linear solver to the Jacobian approximation function.

get_num_jac_evals [Cvode.Dls]

Returns the number of calls made by a direct linear solver to the Jacobian approximation function.

get_num_jtimes_evals [Idas.Adjoint.Spils]

Returns the cumulative number of calls to the Jacobian-vector function.

get_num_jtimes_evals [Cvodes.Adjoint.Spils]

Returns the cumulative number of calls to the Jacobian-vector function.

get_num_jtimes_evals [Arkode.MRIStep.Spils]

Returns the cumulative number of calls to the Jacobian-vector function.

get_num_jtimes_evals [Arkode.ARKStep.Spils]

Returns the cumulative number of calls to the Jacobian-vector function.

get_num_jtimes_evals [Ida.Spils]

Returns the cumulative number of calls to the Jacobian-vector function.

get_num_jtimes_evals [Kinsol.Spils]

Returns the cumulative number of calls to the Jacobian-vector function.

get_num_jtimes_evals [Cvode.Spils]

Returns the cumulative number of calls to the Jacobian-vector function.

get_num_jtsetup_evals [Idas.Adjoint.Spils]

Returns the cumulative number of calls to the Jacobian-vector setup function.

get_num_jtsetup_evals [Cvodes.Adjoint.Spils]

Returns the cumulative number of calls to the Jacobian-vector setup function.

get_num_jtsetup_evals [Arkode.MRIStep.Spils]

Returns the cumulative number of calls to the Jacobian-vector setup function.

get_num_jtsetup_evals [Arkode.ARKStep.Spils]

Returns the cumulative number of calls to the Jacobian-vector setup function.

get_num_jtsetup_evals [Ida.Spils]

Returns the cumulative number of calls to the Jacobian-vector setup function.

get_num_jtsetup_evals [Cvode.Spils]

Returns the cumulative number of calls to the Jacobian-vector setup function.

get_num_lin_conv_fails [Idas.Adjoint.Spils]

Returns the cumulative number of linear convergence failures.

get_num_lin_conv_fails [Cvodes.Adjoint.Spils]

Returns the cumulative number of linear convergence failures.

get_num_lin_conv_fails [Arkode.MRIStep.Spils]

Returns the cumulative number of linear convergence failures.

get_num_lin_conv_fails [Arkode.ARKStep.Spils]

Returns the cumulative number of linear convergence failures.

get_num_lin_conv_fails [Ida.Spils]

Returns the cumulative number of linear convergence failures.

get_num_lin_conv_fails [Kinsol.Spils]

Returns the cumulative number of linear convergence failures.

get_num_lin_conv_fails [Cvode.Spils]

Returns the cumulative number of linear convergence failures.

get_num_lin_func_evals [Kinsol.Spils]

Returns the number of calls to the system function for finite difference quotient Jacobian-vector product approximations.

get_num_lin_func_evals [Kinsol.Dls]

Returns the number of calls made by a direct linear solver to the user system function for computing the difference quotient approximation to the Jacobian.

get_num_lin_iters [Idas.Adjoint.Spils]

Returns the cumulative number of linear iterations.

get_num_lin_iters [Cvodes.Adjoint.Spils]

Returns the cumulative number of linear iterations.

get_num_lin_iters [Arkode.MRIStep.Spils]

Returns the cumulative number of linear iterations.

get_num_lin_iters [Arkode.ARKStep.Mass.Spils]

Returns the cumulative number of linear iterations.

get_num_lin_iters [Arkode.ARKStep.Spils]

Returns the cumulative number of linear iterations.

get_num_lin_iters [Ida.Spils]

Returns the cumulative number of linear iterations.

get_num_lin_iters [Kinsol.Spils]

Returns the cumulative number of linear iterations.

get_num_lin_iters [Cvode.Spils]

Returns the cumulative number of linear iterations.

get_num_lin_res_evals [Idas.Adjoint.Spils]

Returns the number of calls to the residual callback for finite difference Jacobian-vector product approximation.

get_num_lin_res_evals [Idas.Adjoint.Dls]

Returns the number of calls to the residual callback due to the finite difference Jacobian approximation.

get_num_lin_res_evals [Ida.Spils]

Returns the number of calls to the residual callback for finite difference Jacobian-vector product approximation.

get_num_lin_res_evals [Ida.Dls]

Returns the number of calls to the residual callback due to the finite difference Jacobian approximation.

get_num_lin_rhs_evals [Cvodes.Adjoint.Spils]

Returns the number of calls to the right-hand side callback for finite difference Jacobian-vector product approximation.

get_num_lin_rhs_evals [Cvodes.Adjoint.Dls]

Returns the number of calls to the right-hand side callback due to the finite difference Jacobian approximation.

get_num_lin_rhs_evals [Arkode.MRIStep.Spils]

Returns the number of calls to the right-hand side callback for finite difference Jacobian-vector product approximation.

get_num_lin_rhs_evals [Arkode.MRIStep.Dls]

Returns the number of calls to the right-hand side callback due to the finite difference Jacobian approximation.

get_num_lin_rhs_evals [Arkode.ARKStep.Spils]

Returns the number of calls to the right-hand side callback for finite difference Jacobian-vector product approximation.

get_num_lin_rhs_evals [Arkode.ARKStep.Dls]

Returns the number of calls to the right-hand side callback due to the finite difference Jacobian approximation.

get_num_lin_rhs_evals [Cvode.Spils]

Returns the number of calls to the right-hand side callback for finite difference Jacobian-vector product approximation.

get_num_lin_rhs_evals [Cvode.Dls]

Returns the number of calls to the right-hand side callback due to the finite difference Jacobian approximation.

get_num_lin_solv_setups [Idas.Adjoint]

Returns the number of calls made to the linear solver's setup function.

get_num_lin_solv_setups [Idas.Sensitivity]

Returns the number of calls made to the linear solver's setup function due to forward sensitivity calculations.

get_num_lin_solv_setups [Cvodes.Adjoint]

Returns the number of calls made to the linear solver's setup function.

get_num_lin_solv_setups [Cvodes.Sensitivity]

Returns the number of calls made to the linear solver's setup function due to forward sensitivity calculations.

get_num_lin_solv_setups [Arkode.MRIStep]

Returns the number of calls made to the linear solver's setup function.

get_num_lin_solv_setups [Arkode.ARKStep]

Returns the number of calls made to the linear solver's setup function.

get_num_lin_solv_setups [Ida]

Returns the number of calls made to the linear solver's setup function.

get_num_lin_solv_setups [Cvode]

Returns the number of calls made to the linear solver's setup function.

get_num_mass_mult [Arkode.ARKStep.Mass.Spils]

Returns the cumulative number of calls to the mass-matrix-vector product function (Arkode.ARKStep.Mass.Spils.mass_times_vec_fn).

get_num_mtsetups [Arkode.ARKStep.Mass.Spils]

Returns the cumulative number of calls to the mass-matrix-vector setup function.

get_num_mult [Arkode.ARKStep.Mass.Dls]

Returns the number of calls made to the mass matrix-times-vector routine.

get_num_mult_setups [Arkode.ARKStep.Mass.Dls]

Returns the number of calls made to the mass matrix matvec setup routine.

get_num_nonlin_solv_conv_fails [Idas.Adjoint]

Returns the cumulative number of nonlinear convergence failures.

get_num_nonlin_solv_conv_fails [Idas.Sensitivity]

Returns the cumulativ number of nonlinear convergence failures during sensitivity calculations.

get_num_nonlin_solv_conv_fails [Cvodes.Adjoint]

Returns the cumulative number of nonlinear convergence failures.

get_num_nonlin_solv_conv_fails [Cvodes.Sensitivity]

Returns the cumulative number of nonlinear convergence failures during sensitivity calculations.

get_num_nonlin_solv_conv_fails [Arkode.MRIStep]

Returns the cumulative number of nonlinear convergence failures.

get_num_nonlin_solv_conv_fails [Arkode.ARKStep]

Returns the cumulative number of nonlinear convergence failures.

get_num_nonlin_solv_conv_fails [Ida]

Returns the cumulative number of nonlinear convergence failures.

get_num_nonlin_solv_conv_fails [Cvode]

Returns the cumulative number of nonlinear convergence failures.

get_num_nonlin_solv_iters [Idas.Adjoint]

Returns the cumulative number of nonlinear (functional or Newton) iterations performed.

get_num_nonlin_solv_iters [Idas.Sensitivity]

Returns the cumulative number of nonlinear iterations for sensitivity calculations.

get_num_nonlin_solv_iters [Cvodes.Adjoint]

Returns the cumulative number of nonlinear (functional or Newton) iterations.

get_num_nonlin_solv_iters [Cvodes.Sensitivity]

Returns the cumulative number of nonlinear iterations performed for sensitivity calculations.

get_num_nonlin_solv_iters [Arkode.MRIStep]

Returns the cumulative number of nonlinear (functional or Newton) iterations.

get_num_nonlin_solv_iters [Arkode.ARKStep]

Returns the cumulative number of nonlinear (functional or Newton) iterations.

get_num_nonlin_solv_iters [Ida]

Returns the cumulative number of nonlinear (functional or Newton) iterations.

get_num_nonlin_solv_iters [Kinsol]

Returns the cumulative number of nonlinear iterations.

get_num_nonlin_solv_iters [Cvode]

Returns the cumulative number of nonlinear (functional or Newton) iterations.

get_num_prec_evals [Idas.Adjoint.Spils]

Returns the number of calls to the setup function.

get_num_prec_evals [Cvodes.Adjoint.Spils]

Returns the cumulative number of calls to the setup function with jok=false.

get_num_prec_evals [Arkode.MRIStep.Spils]

Returns the cumulative number of calls to the setup function with jok=false.

get_num_prec_evals [Arkode.ARKStep.Mass.Spils]

Returns the cumulative number of calls to the setup function with jok=false.

get_num_prec_evals [Arkode.ARKStep.Spils]

Returns the cumulative number of calls to the setup function with jok=false.

get_num_prec_evals [Ida.Spils]

Returns the number of calls to the setup function.

get_num_prec_evals [Kinsol.Spils]

Returns the cumulative number of calls to the setup function.

get_num_prec_evals [Cvode.Spils]

Returns the cumulative number of calls to the setup function with jok=false.

get_num_prec_solves [Idas.Adjoint.Spils]

Returns the cumulative number of calls to the preconditioner solve function.

get_num_prec_solves [Cvodes.Adjoint.Spils]

Returns the cumulative number of calls to the preconditioner solve function.

get_num_prec_solves [Arkode.MRIStep.Spils]

Returns the cumulative number of calls to the preconditioner solve function.

get_num_prec_solves [Arkode.ARKStep.Mass.Spils]

Returns the cumulative number of calls to the preconditioner solve function.

get_num_prec_solves [Arkode.ARKStep.Spils]

Returns the cumulative number of calls to the preconditioner solve function.

get_num_prec_solves [Ida.Spils]

Returns the cumulative number of calls to the preconditioner solve function.

get_num_prec_solves [Kinsol.Spils]

Returns the cumulative number of calls to the preconditioner solve function.

get_num_prec_solves [Cvode.Spils]

Returns the cumulative number of calls to the preconditioner solve function.

get_num_proj_evals [Cvode]

Returns the current total number of projection evaluations.

get_num_proj_fails [Cvode]

Returns the current total number of projection evaluation failures.

get_num_res_evals [Idas.Adjoint]

Returns the number of calls to the backward residual function.

get_num_res_evals [Idas.Sensitivity]

Returns the number of calls to the sensitivity residual function.

get_num_res_evals [Ida]

Returns the number of calls to the residual function.

get_num_res_evals_sens [Idas.Sensitivity]

Returns the number of calls to the residual function due to the internal finite difference approximation of the sensitivity residual.

get_num_rhs_evals [Idas.Adjoint.Quadrature]

Returns the number of calls to the backward quadrature right-hand side function.

get_num_rhs_evals [Idas.Sensitivity.Quadrature]

Returns the number of calls to the quadrature right-hand side function.

get_num_rhs_evals [Idas.Quadrature]

Returns the number of calls to the quadrature function.

get_num_rhs_evals [Cvodes.Adjoint.Quadrature]

Returns the number of calls to the backward quadrature right-hand side function.

get_num_rhs_evals [Cvodes.Adjoint.Spils.Banded]

Returns the number of calls to the right-hand side callback for the difference banded Jacobian approximation.

get_num_rhs_evals [Cvodes.Adjoint.Diag]

Returns the number of calls made to the right-hand side function due to finite difference Jacobian approximation in the Diagonal linear solver.

get_num_rhs_evals [Cvodes.Adjoint]

Returns the number of calls to the backward right-hand side function.

get_num_rhs_evals [Cvodes.Sensitivity.Quadrature]

Returns the number of calls to the quadrature right-hand side function.

get_num_rhs_evals [Cvodes.Sensitivity]

Returns the number of calls to the sensitivity function.

get_num_rhs_evals [Cvodes.Quadrature]

Returns the number of calls to the quadrature function.

get_num_rhs_evals [Arkode.MRIStep]

The number of calls to the (outer) right-hand-side functions.

get_num_rhs_evals [Arkode.ERKStep]

Returns the number of calls to the right-hand side function.

get_num_rhs_evals [Arkode.ARKStep]

Returns the number of calls to the right-hand side functions.

get_num_rhs_evals [Arkode.Spils.Banded]

Returns the number of calls to the right-hand side callback for the difference banded Jacobian approximation.

get_num_rhs_evals [Cvode.Spils.Banded]

Returns the number of calls to the right-hand side callback for the difference banded Jacobian approximation.

get_num_rhs_evals [Cvode.Diag]

Returns the number of calls made to the right-hand side function due to finite difference Jacobian approximation in the Diagonal linear solver.

get_num_rhs_evals [Cvode]

Returns the number of calls to the right-hand side function.

get_num_rhs_evals_sens [Cvodes.Sensitivity]

Returns the number of calls to the right-hand side function due to the internal finite difference approximation of the sensitivity equations.

get_num_roots [Arkode.MRIStep]

Returns the number of root functions.

get_num_roots [Arkode.ERKStep]

Returns the number of root functions.

get_num_roots [Arkode.ARKStep]

Returns the number of root functions.

get_num_roots [Ida]

Returns the number of root functions.

get_num_roots [Cvode]

Returns the number of root functions.

get_num_setups [Arkode.ARKStep.Mass.Dls]

Returns the number of calls made to the mass matrix solver setup routine.

get_num_solves [Arkode.ARKStep.Mass.Dls]

Returns the number of calls made to the mass matrix solver solve routine.

get_num_stab_lim_order_reds [Cvodes.Adjoint]

Returns the number of order reductions dictated by the BDF stability limit detection algorithm.

get_num_stab_lim_order_reds [Cvode]

Returns the number of order reductions dictated by the BDF stability limit detection algorithm.

get_num_step_attempts [Arkode.ERKStep]

Returns the cumulative number of steps attempted by the solver.

get_num_step_attempts [Arkode.ARKStep]

Returns the cumulative number of steps attempted by the solver.

get_num_steps [Idas.Adjoint]

Returns the cumulative number of internal steps taken by the solver.

get_num_steps [Cvodes.Adjoint]

Returns the cumulative number of internal steps taken by the solver.

get_num_steps [Arkode.MRIStep]

Returns the cumulative number of internal steps taken by the solver.

get_num_steps [Arkode.ERKStep]

Returns the cumulative number of internal steps taken by the solver.

get_num_steps [Arkode.ARKStep]

Returns the cumulative number of internal steps taken by the solver.

get_num_steps [Ida]

Returns the cumulative number of internal solver steps.

get_num_steps [Cvode]

Returns the cumulative number of internal steps taken by the solver.

get_num_stgr_nonlin_solv_conv_fails [Cvodes.Sensitivity]

Returns the cumulative number of nonlinear convergence failures for each sensitivity equation separately in the Staggered1 case.

get_num_stgr_nonlin_solv_iters [Cvodes.Sensitivity]

Returns the cumulative number of nonlinear (functional or Newton) iterations for each sensitivity equation separately in the Staggered1 case.

get_ops [Sundials_Matrix]

Return a record of matrix operations.

get_profiler [Sundials.Context]

Return the profiler associated with a context.

get_res_id [Sundials_LinearSolver]

The preconditioned initial residual vector.

get_res_norm [Sundials_LinearSolver]

The final residual norm from the last Sundials_LinearSolver.solve call.

get_res_weights [Arkode.ARKStep]

Returns the residual error weights at the current time.

get_root_info [Arkode.MRIStep]

Fills an array showing which functions were found to have a root.

get_root_info [Arkode.ERKStep]

Fills an array showing which functions were found to have a root.

get_root_info [Arkode.ARKStep]

Fills an array showing which functions were found to have a root.

get_root_info [Ida]

Fills an array showing which functions were found to have a root.

get_root_info [Cvode]

Fills an array showing which functions were found to have a root.

get_row [Sundials_Matrix.Sparse]

get_row a j returns the data index of row j.

get_rowval [Sundials_Matrix.Sparse]

r = get_rowval a idx returns the row r at the idxth position.

get_stats [Idas.Adjoint.Quadrature]

Returns quadrature-related statistics.

get_stats [Idas.Sensitivity.Quadrature]

Returns quadrature-related statistics.

get_stats [Idas.Sensitivity]

Returns the sensitivity-related statistics as a group.

get_stats [Idas.Quadrature]

Returns quadrature-related statistics.

get_stats [Cvodes.Adjoint.Quadrature]

Returns quadrature-related statistics.

get_stats [Cvodes.Sensitivity.Quadrature]

Returns quadrature-related statistics.

get_stats [Cvodes.Sensitivity]

Returns the sensitivity-related statistics as a group.

get_stats [Cvodes.Quadrature]

Returns quadrature-related statistics.

get_step_length [Kinsol]

Returns the scaled Euclidiean l2 norm of the step used during the previous iteration.

get_step_stats [Arkode.ERKStep]

Returns a grouped set of integrator statistics.

get_step_stats [Arkode.ARKStep]

Returns a grouped set of integrator statistics.

get_sys_fn [Sundials_NonlinearSolver.FixedPoint]

Returns the residual function that defines the nonlinear system.

get_sys_fn [Sundials_NonlinearSolver.Newton]

Returns the residual function that defines the nonlinear system.

get_timestepper_stats [Arkode.ERKStep]

Returns a grouped set of time-stepper statistics.

get_timestepper_stats [Arkode.ARKStep]

Returns a grouped set of time-stepper statistics.

get_tol_scale_factor [Idas.Adjoint]

Returns a suggested factor by which the user's tolerances should be scaled when too much accuracy has been requested for some internal step.

get_tol_scale_factor [Cvodes.Adjoint]

Returns a suggested factor by which the user's tolerances should be scaled when too much accuracy has been requested for some internal step.

get_tol_scale_factor [Arkode.MRIStep]

Returns a suggested factor by which the user's tolerances should be scaled when too much accuracy has been requested for some internal step.

get_tol_scale_factor [Arkode.ERKStep]

Returns a suggested factor by which the user's tolerances should be scaled when too much accuracy has been requested for some internal step.

get_tol_scale_factor [Arkode.ARKStep]

Returns a suggested factor by which the user's tolerances should be scaled when too much accuracy has been requested for some internal step.

get_tol_scale_factor [Ida]

Returns a suggested factor by which the user's tolerances should be scaled when too much accuracy has been requested for some internal step.

get_tol_scale_factor [Cvode]

Returns a suggested factor by which the user's tolerances should be scaled when too much accuracy has been requested for some internal step.

get_type [Sundials_NonlinearSolver]

Returns the type of a nonlinear solver.

get_type [Sundials_LinearSolver]

Returns the type of the linear solver.

get_work_space [Idas_bbd]

Returns the sizes of the real and integer workspaces used by the BBD preconditioner.

get_work_space [Ida_bbd]

Returns the sizes of the real and integer workspaces used by the BBD preconditioner.

get_work_space [Cvodes_bbd]

Returns the sizes of the real and integer workspaces used by the BBD preconditioner.

get_work_space [Cvode_bbd]

Returns the sizes of the real and integer workspaces used by the BBD preconditioner.

get_work_space [Arkode_bbd]

Returns the sizes of the real and integer workspaces used by the BBD preconditioner.

get_work_space [Kinsol_bbd]

Returns the sizes of the real and integer workspaces used by the BBD preconditioner.

get_work_space [Idas.Adjoint.Spils]

Returns the sizes of the real and integer workspaces used by the linear solver.

get_work_space [Idas.Adjoint.Dls]

Returns the sizes of the real and integer workspaces used by a direct linear solver.

get_work_space [Idas.Adjoint]

Returns the real and integer workspace sizes.

get_work_space [Cvodes.Adjoint.Spils.Banded]

Returns the sizes of the real and integer workspaces used by the banded preconditioner module.

get_work_space [Cvodes.Adjoint.Spils]

Returns the sizes of the real and integer workspaces used by the spils linear solver.

get_work_space [Cvodes.Adjoint.Dls]

Returns the sizes of the real and integer workspaces used by a direct linear solver.

get_work_space [Cvodes.Adjoint.Diag]

Returns the sizes of the real and integer workspaces used by the Diagonal linear solver.

get_work_space [Cvodes.Adjoint]

Returns the real and integer workspace sizes.

get_work_space [Arkode.MRIStep.Spils]

Returns the sizes of the real and integer workspaces used by the spils linear solver.

get_work_space [Arkode.MRIStep.Dls]

Returns the sizes of the real and integer workspaces used by a direct linear solver.

get_work_space [Arkode.MRIStep]

Returns the real and integer workspace sizes.

get_work_space [Arkode.ERKStep]

Returns the real and integer workspace sizes.

get_work_space [Arkode.ARKStep.Mass.Spils]

Returns the sizes of the real and integer workspaces used by the spils linear solver.

get_work_space [Arkode.ARKStep.Mass.Dls]

Returns the sizes of the real and integer workspaces used by a direct linear mass matrix solver.

get_work_space [Arkode.ARKStep.Spils]

Returns the sizes of the real and integer workspaces used by the spils linear solver.

get_work_space [Arkode.ARKStep.Dls]

Returns the sizes of the real and integer workspaces used by a direct linear solver.

get_work_space [Arkode.ARKStep]

Returns the real and integer workspace sizes.

get_work_space [Arkode.Spils.Banded]

Returns the sizes of the real and integer workspaces used by the banded preconditioner module.

get_work_space [Ida.Spils]

Returns the sizes of the real and integer workspaces used by the spils linear solver.

get_work_space [Ida.Dls]

Returns the sizes of the real and integer workspaces used by a direct linear solver.

get_work_space [Ida]

Returns the sizes of the real and integer workspaces.

get_work_space [Kinsol.Spils]

Returns the sizes of the real and integer workspaces used by the spils linear solver.

get_work_space [Kinsol.Dls]

Returns the sizes of the real and integer workspaces used by a direct linear solver.

get_work_space [Kinsol]

Returns the sizes of the real and integer workspaces.

get_work_space [Cvode.Spils.Banded]

Returns the sizes of the real and integer workspaces used by the banded preconditioner module.

get_work_space [Cvode.Spils]

Returns the sizes of the real and integer workspaces used by the spils linear solver.

get_work_space [Cvode.Dls]

Returns the sizes of the real and integer workspaces used by a direct linear solver.

get_work_space [Cvode.Diag]

Returns the sizes of the real and integer workspaces used by the Diagonal linear solver.

get_work_space [Cvode]

Returns the real and integer workspace sizes.

get_work_space [Sundials_LinearSolver]

The storage requirements of the linear solver.

get_y [Idas.Adjoint]

Fills the vector with the interpolated forward solution and its derivative at the given time during a backward simulation.

get_y [Cvodes.Adjoint]

Fills the vector with the interpolated forward solution at the given time during a backward simulation.

getlength [Nvector.NVECTOR_OPS]

Returns the number of "active" entries.

getlength [Nvector.Ops]

Returns the number of "active" entries.

getrf [Sundials_Matrix.ArrayDense]

getrf a p performs the LU factorization of the square matrix a with partial pivoting according to p.

getrs [Sundials_Matrix.ArrayDense]

getrs a p b finds the solution of ax = b using an LU factorization found by Sundials_Matrix.ArrayDense.getrf.

getrs' [Sundials_Matrix.ArrayDense]

Like Sundials_Matrix.ArrayDense.getrs but stores b starting at a given offset.

global_length [Nvector_parallel]

Returns the number of global elements for a parallel nvector.

gt_zero [Sundials.Constraint]

The constant 2.0.

H
has_constrmask [Nvector.Ops.Local]

Indicates whether an nvector supports a local Nvector.Ops.Local.constrmask.

has_constvectorarray [Nvector.Ops]

Indicates whether an nvector supports Nvector.Ops.constvectorarray.

has_dotprod [Nvector.Ops.Local]

Indicates whether an nvector supports a local Nvector.Ops.Local.dotprod.

has_dotprodmulti [Nvector.Ops.Local]

Indicates whether an nvector supports a local Nvector.Ops.Local.dotprodmulti.

has_dotprodmulti [Nvector.Ops]

Indicates whether an nvector supports Nvector.Ops.dotprodmulti.

has_dotprodmulti_allreduce [Nvector.Ops.Local]

Indicates whether an nvector supports a local Nvector.Ops.Local.dotprodmulti_allreduce.

has_invtest [Nvector.Ops.Local]

Indicates whether an nvector supports a local Nvector.Ops.Local.invtest.

has_l1norm [Nvector.Ops.Local]

Indicates whether an nvector supports a local Nvector.Ops.Local.l1norm.

has_linearcombination [Nvector.Ops]

Indicates whether an nvector supports Nvector.Ops.linearcombination.

has_linearcombinationvectorarray [Nvector.Ops]

Indicates whether an nvector supports Nvector.Ops.linearcombinationvectorarray.

has_linearsumvectorarray [Nvector.Ops]

Indicates whether an nvector supports Nvector.Ops.linearsumvectorarray.

has_maxnorm [Nvector.Ops.Local]

Indicates whether an nvector supports a local Nvector.Ops.Local.maxnorm.

has_min [Nvector.Ops.Local]

Indicates whether an nvector supports a local Nvector.Ops.Local.min.

has_minquotient [Nvector.Ops.Local]

Indicates whether an nvector supports a local Nvector.Ops.Local.minquotient.

has_scaleaddmulti [Nvector.Ops]

Indicates whether an nvector supports Nvector.Ops.scaleaddmulti.

has_scaleaddmultivectorarray [Nvector.Ops]

Indicates whether an nvector supports Nvector.Ops.scaleaddmultivectorarray.

has_scalevectorarray [Nvector.Ops]

Indicates whether an nvector supports Nvector.Ops.scalevectorarray.

has_wrmsnormmaskvectorarray [Nvector.Ops]

Indicates whether an nvector supports Nvector.Ops.wrmsnormmaskvectorarray.

has_wrmsnormvectorarray [Nvector.Ops]

Indicates whether an nvector supports Nvector.Ops.wrmsnormvectorarray.

has_wsqrsum [Nvector.Ops.Local]

Indicates whether an nvector supports a local Nvector.Ops.Local.wsqrsum.

has_wsqrsummask [Nvector.Ops.Local]

Indicates whether an nvector supports a local Nvector.Ops.Local.wsqrsummask.

hide_communicator [Nvector_parallel]

Hides an MPI communicator for use in custom nvector functions.

I
imex [Arkode.MRIStep]

Slow problem with both implicit and explicit parts.

imex [Arkode.ARKStep]

Additive Runge-Kutta (ARK) solution of multi-rate problem.

implicit [Arkode.MRIStep]

Implicit slow right-hand-side function only.

implicit [Arkode.ARKStep]

Diagonally Implicit Runge-Kutta (DIRK) solution of stiff problem.

implicit_coupling_matrices [Arkode.MRIStep.Coupling]

The set of implicit coupling matrices $\Gamma^{{k}}$ as nmat * stages * stages floats.

init [Idas.Adjoint.Quadrature]

This function activates the integration of quadrature equations.

init [Idas.Adjoint]

Activates the forward-backward problem.

init [Idas.Sensitivity.Quadrature]

Activate the integration of quadrature sensitivities.

init [Idas.Sensitivity]

Activates the calculation of forward sensitivities.

init [Idas.Quadrature]

Activates the integration of quadrature equations.

init [Cvodes.Adjoint.Quadrature]

This function activates the integration of quadrature equations.

init [Cvodes.Adjoint]

Activates the forward-backward problem.

init [Cvodes.Sensitivity.Quadrature]

Activate the integration of quadrature sensitivities.

init [Cvodes.Sensitivity]

Activates the calculation of forward sensitivities.

init [Cvodes.Quadrature]

Activates the integration of quadrature equations.

init [Arkode.MRIStep]

Creates and initializes a session with the solver.

init [Arkode.ERKStep]

Creates and initializes a session with the solver.

init [Arkode.ARKStep]

Creates and initializes a session with the solver.

init [Ida]

Creates and initializes a session with the solver.

init [Kinsol]

Creates and initializes a session with the Kinsol solver.

init [Cvode]

Creates and initializes a session with the solver.

init [Sundials_NonlinearSolver]

Initializes a nonlinear solver.

init [Sundials_LinearSolver]

Initializes a linear solver.

init [Sundials.RootDirs]

init n f returns an array with n elements, with element i set to f i.

init [Sundials.Roots]

init n f returns an array with n elements, with element i set to f i.

init [Sundials_ROArray]

Create an immutable array of the given length and apply a function to set each element.

init [Sundials_RealArray]

init n f returns an array with n elements, with element i set to f i.

init_backward [Idas.Adjoint]

Creates and initializes a backward session attached to an existing (forward) session.

init_backward [Cvodes.Adjoint]

Creates and initializes a backward session attached to an existing (forward) session.

int_of_root [Sundials.Roots]

Returns 0 for NoRoot, 1 for Rising, and -1 for Falling.

into_array [Sundials_RealArray]

Copies into an existing float array.

inv [Nvector.NVECTOR_OPS]

inv x z calculates z = 1/x (pointwise).

inv [Nvector.Ops]

inv x z calculates z = 1/x (pointwise).

invalidate [Sundials_Matrix.Sparse]

Called internally when the corresponding value in the underlying library ceases to exist.

invalidate [Sundials_Matrix.Band]

Called internally when the corresponding value in the underlying library ceases to exist.

invalidate [Sundials_Matrix.Dense]

Called internally when the corresponding value in the underlying library ceases to exist.

invoke [Sundials]

Use a callback function provided by the underlying library.

invtest [Nvector.NVECTOR_OPS.Local]

invtest x z calculates z(i) = 1 / x(i) with prior testing for zero values.

invtest [Nvector.NVECTOR_OPS]

invtest x z calculates z(i) = 1 / x(i) with prior testing for zero values.

invtest [Nvector.Ops.Local]

invtest x z calculates z(i) = 1 / x(i) with prior testing for zero values.

invtest [Nvector.Ops]

invtest x z calculates z(i) = 1 / x(i) with prior testing for zero values.

is_csc [Sundials_Matrix.Sparse]

Returns true iff the matrix format is CSC.

iter [Sundials.Roots]

iter f r successively applies f to each element in r.

iter [Sundials_ROArray]

Call a function successively on elements of an immutable array starting at index 0.

iter [Sundials_RealArray]

iter f a successively applies f to the elements of a.

iter2 [Sundials_ROArray]

Call a function successively on paired elements from two immutable arrays starting at index 0.

iter3 [Sundials_ROArray]

Call a function successively on triples from three immutable arrays starting at index 0.

iteri [Sundials.Roots]

iteri f r successively applies f to the indexes and elements of r.

iteri [Sundials_ROArray]

Call a function successively on index values and elements of an immutable array starting at index 0.

iteri [Sundials_RealArray]

iteri f a successively applies f to the indexes and values of a.

iteri2 [Sundials_ROArray]

Call a function successively on paired elements, and their indexes, from two immutable arrays starting at index 0.

iteri3 [Sundials_ROArray]

Call a function successively on triples, and their indexes, from three immutable arrays starting at index 0.

K
klu [Sundials_LinearSolver.Direct]

Creates a direct linear solver on sparse matrices using KLU.

klu_enabled [Sundials_Config]

Indicates whether the KLU sparse linear solver is available.

L
l1norm [Nvector.NVECTOR_OPS.Local]

l1norm x returns the l1 norm of x.

l1norm [Nvector.NVECTOR_OPS]

l1norm x returns the l1 norm of x.

l1norm [Nvector.Ops.Local]

l1norm x returns the l1 norm of x.

l1norm [Nvector.Ops]

l1norm x returns the l1 norm of x.

lapack_band [Sundials_LinearSolver.Direct]

Creates a direct linear solver on banded matrices using LAPACK.

lapack_dense [Sundials_LinearSolver.Direct]

Creates a direct linear solver on dense matrices using LAPACK.

lapack_enabled [Sundials_Config]

Indicates whether the interface was compiled with BLAS/LAPACK support.

length [Nvector_mpimany]

Returns the sum of the lengths of the component nvectors.

length [Nvector_array.ArrayOps]

Return the length of an array.

length [Nvector_many]

Returns the sum of the lengths of the component nvectors.

length [Sundials.RootDirs]

Returns the length of an array

length [Sundials.Roots]

Returns the length of an array.

length [Sundials_ROArray]

Return the length of the array.

length [Sundials_RealArray]

Returns the length of an array.

leq_zero [Sundials.Constraint]

The constant -1.0.

linearcombination [Nvector.NVECTOR_OPS]

linearcombination c x z calculates $z_i = \sum_{j=0}^{n_v-1} c_j (x_j)_i$ .

linearcombination [Nvector.Ops]

linearcombination c x z calculates $z_i = \sum_{j=0}^{n_v-1} c_j (x_j)_i$ .

linearcombinationvectorarray [Nvector.NVECTOR_OPS]

linearcombinationvectorarray c xx z computes the linear combinations of $n_s$ vector arrays containing $n_v$ vectors.

linearcombinationvectorarray [Nvector.Ops]

linearcombinationvectorarray c xx z computes the linear combinations of $n_s$ vector arrays containing $n_v$ vectors.

linearsum [Nvector.NVECTOR_OPS]

linearsum a x b y z calculates z = a*x + b*y.

linearsum [Nvector.Ops]

linearsum a x b y z calculates z = a*x + b*y.

linearsumvectorarray [Nvector.NVECTOR_OPS]

linearsumvectorarray a x b y z computes the linear sum of the $n_v$ elements of x and y.

linearsumvectorarray [Nvector.Ops]

linearsumvectorarray a x b y z computes the linear sum of the $n_v$ elements of x and y.

load_dirk [Arkode.ButcherTable]

Retrieves a diagonally-implicit Butcher table.

load_erk [Arkode.ButcherTable]

Retrieves an explicit Butcher table.

load_table [Arkode.MRIStep.Coupling]

Retrieves a copy of a specific coupling table.

local_array [Nvector_parallel]

local_array nv returns the local array a underlying the parallel nvector nv.

local_length [Nvector_parallel]

Returns the number of local elements for a parallel nvector.

lt_zero [Sundials.Constraint]

The constant -2.0.

M
make [Nvector_pthreads.Any]

make nthreads n iv creates a new Pthreads nvector with nthreads threads and n elements inialized to iv.

make [Nvector_pthreads]

make nthreads n iv creates a new Pthreads nvector with nthreads threads and n elements inialized to iv.

make [Nvector_openmp.Any]

make nthreads n iv creates a new OpenMP nvector with nthreads threads and n elements inialized to iv.

make [Nvector_openmp]

make nthreads n iv creates a new OpenMP nvector with nthreads threads and n elements inialized to iv.

make [Nvector_parallel.Any]

make nl ng c iv creates a new parallel nvector with nl local elements, that is part of a global array with ng elements.

make [Nvector_parallel]

make nl ng c iv creates a new parallel nvector with nl local elements, that is part of a global array with ng elements.

make [Sundials_parallel.Context]

Create a new context.

make [Sundials_parallel.Profiler]

Creates a new profiler with the given name.

make [Arkode.MRIStep.Coupling]

Create a set of coupling coefficients.

make [Arkode.MRIStep.InnerStepper]

Creates an inner stepper.

make [Nvector_array.ArrayOps]

Create an array of the given length initialized to the given value.

make [Nvector_array.ARRAY_NVECTOR]

make n x creates an nvector containing an array of n elements, each of which is equal to x.

make [Nvector_serial.Any]

make n iv creates a new serial nvector with n elements, each initialized to iv.

make [Nvector_serial]

make n iv creates a new serial nvector with n elements, each initialized to iv.

make [Sundials_NonlinearSolver.Custom]

Create a nonlinear solver from a set of callback functions.

make [Sundials_NonlinearSolver.FixedPoint]

Creates a nonlinear solver using fixed-point (functional) iteration.

make [Sundials_NonlinearSolver.Newton]

Creates a nonlinear solver based on Newton's method.

make [Sundials_LinearSolver.Direct.Superlumt]

Creates a direct linear solver on sparse matrices using SuperLUMT.

make [Sundials_LinearSolver.Direct.Klu]

Creates a direct linear solver on sparse matrices using KLU.

make [Sundials_Matrix.ArrayBand]

make (smu, mu, ml) n v returns an n by n band matrix with storage upper bandwidth smu, upper bandwidth sm, lower half-bandwidth ml, and all elements initialized to v.

make [Sundials_Matrix.ArrayDense]

make m n x returns an m by n array dense matrix with elements set to x.

make [Sundials_Matrix.Sparse]

make fmt m n nnz returns an m by n sparse matrix in the specified format with a potential for nnz non-zero elements.

make [Sundials_Matrix.Band]

Returns a band matrix with the given Sundials_Matrix.Band.dimensions and all elements initialized to the given value.

make [Sundials_Matrix.Dense]

make m n x returns an m by n dense matrix with elements set to x.

make [Sundials.RootDirs]

make n x returns an array with n elements each set to x.

make [Sundials.Roots]

make n x returns an array with n elements each set to x.

make [Sundials.Context]

Create a new context, optionally specifying the profiler to use.

make [Sundials.Profiler]

Creates a new profiler with the given name.

make [Sundials_LintArray]

make n v returns an array with n elements each set to v.

make [Sundials_RealArray2]

make nr nc v returns an array with nr rows and nc columns, and with elements set to v.

make [Sundials_RealArray]

make n x returns an array with n elements each set to x.

make_data [Sundials_RealArray2]

make m n returns an uninitialized m by n array.

make_dls [Sundials_LinearSolver.Custom]

Create a direct linear solver given a set of operations and an internal state.

make_ops [Sundials_LinearSolver.Custom]

Convenience function for constructing a Sundials_LinearSolver.Custom.ops value.

make_sens [Sundials_NonlinearSolver.Custom]

Create a nonlinear solver from a set of callback functions for sensitivity problems that pass arrays of nvectors.

make_sens [Sundials_NonlinearSolver.FixedPoint]

Creates a nonlinear solver using fixed-point (functional) iteration for sensitivity-enabled integrators.

make_sens [Sundials_NonlinearSolver.Newton]

Creates a nonlinear solver based on Newton's method for sensitivity-enabled integrators.

make_with_matrix [Sundials_LinearSolver.Custom]

Create a linear solver given a set of operations and an internal state.

make_without_matrix [Sundials_LinearSolver.Custom]

Create a linear solver given a set of operations and an internal state.

make_wrap [Nvector_custom.Any]

Instantiation of custom nvectors.

make_wrap [Nvector_custom]

Instantiation of custom nvectors.

map [Sundials_ROArray]

Create a new immutable array by mapping a function across the elements of an existing one.

map [Sundials_RealArray]

map f a replaces each element a.{i} with f a.{i}.

map2 [Sundials_ROArray]

Create a new immutable array by mapping a function across the elements of two existing ones.

map3 [Sundials_ROArray]

Create a new immutable array by mapping a function across the elements of three existing ones.

mapi [Sundials_ROArray]

Create a new immutable array by mapping a function across the elements, and their indexes, of an existing one.

mapi [Sundials_RealArray]

map f a replaces each element a.{i} with f i a.{i}.

matrix_embedded_solver [Idas.Adjoint]

Create an IDA-specific linear solver from a generic matrix embedded solver.

matrix_embedded_solver [Cvodes.Adjoint]

Create a CVode-specific linear solver from a generic matrix embedded solver.

matrix_embedded_solver [Arkode.MRIStep]

Create an MRIStep-specific linear solver from a generic matrix embedded solver.

matrix_embedded_solver [Arkode.ARKStep.Mass]

Create an ARKStep-specific mass linear solver from a generic matrix embedded solver.

matrix_embedded_solver [Arkode.ARKStep]

Create an ARKStep-specific linear solver from a generic matrix embedded solver.

matrix_embedded_solver [Ida]

Create an IDA-specific linear solver from a generic matrix embedded solver.

matrix_embedded_solver [Kinsol]

Create a Kinsol-specific linear solver from a generic matrix embedded solver.

matrix_embedded_solver [Cvode]

Create a CVode-specific linear solver from a generic matrix embedded solver.

matvec [Sundials_Matrix.ArrayBand]

The call matvec a x y computes the matrix-vector product $y = Ax$.

matvec [Sundials_Matrix.ArrayDense]

The call matvec a x y computes the matrix-vector product $y = Ax$.

matvec [Sundials_Matrix.Sparse]

The call matvec a x y computes the matrix-vector product $y = Ax$.

matvec [Sundials_Matrix.Band]

The call matvec a x y computes the matrix-vector product $y = Ax$.

matvec [Sundials_Matrix.Dense]

The call matvec a x y computes the matrix-vector product $y = Ax$.

matvec [Sundials_Matrix]

The call matvec a x y computes the matrix-vector product $y = Ax$.

matvec_setup [Sundials_Matrix]

Perform any setup required before a matrix-vector product.

maxnorm [Nvector.NVECTOR_OPS.Local]

maxnorm x returns the maximum absolute value in x.

maxnorm [Nvector.NVECTOR_OPS]

maxnorm x returns the maximum absolute value in x.

maxnorm [Nvector.Ops.Local]

maxnorm x returns the maximum absolute value in x.

maxnorm [Nvector.Ops]

maxnorm x returns the maximum absolute value in x.

mem [Sundials_ROArray]

Returns true only if the immutable array contains an element that is structurally equal to the given one.

memq [Sundials_ROArray]

Returns true only if the immutable array contains an element that is (physically) identical to the given one.

method_order [Arkode.MRIStep.Coupling]

The accuracy order of the MRI method.

min [Nvector.NVECTOR_OPS.Local]

min x returns the smallest element in x.

min [Nvector.NVECTOR_OPS]

min x returns the smallest element in x.

min [Nvector.Ops.Local]

min x returns the smallest element in x.

min [Nvector.Ops]

min x returns the smallest element in x.

minquotient [Nvector.NVECTOR_OPS.Local]

minquotient num denom returns the minimum of num(i) / denom(i).

minquotient [Nvector.NVECTOR_OPS]

minquotient num denom returns the minimum of num(i) / denom(i).

minquotient [Nvector.Ops.Local]

minquotient num denom returns the minimum of num(i) / denom(i).

minquotient [Nvector.Ops]

minquotient num denom returns the minimum of num(i) / denom(i).

mis_to_mri [Arkode.MRIStep.Coupling]

Create a new coupling table from a slow Butcher table.

modified_gs [Sundials_LinearSolver.Iterative.Algorithms]

Performs a modified Gram-Schmidt orthogonalization.

monitoring_enabled [Sundials_Config]

Indicates whether the underlying library was built with support for monitoring functions.

mpi_enabled [Sundials_Config]

Indicates whether the parallel nvectors and linear solvers are available.

N
nmat [Arkode.MRIStep.Coupling]

The number of $\Gamma^{{k}}$ coupling matrices.

no_roots [Arkode.Common]

A convenience value for signalling that there are no roots to monitor.

no_roots [Ida]

A convenience value for signalling that there are no roots to monitor.

no_roots [Cvode]

A convenience value for signalling that there are no roots to monitor.

no_sens_params [Cvodes.Sensitivity]

Empty pvals, plist, and pbar fields.

num_subvectors [Nvector_mpimany]

Returns the number of subectors in the array.

num_subvectors [Nvector_many]

Returns the number of subectors in the array.

num_threads [Nvector_pthreads]

Returns the number of threads used within a Pthreads nvector.

num_threads [Nvector_openmp]

Returns the number of threads used within an OpenMP nvector.

nvecopenmp_enabled [Sundials_Config]

Indicates whether openmp-based nvectors are available.

nvecpthreads_enabled [Sundials_Config]

Indicates whether pthreads-based nvectors are available.

O
of_array [Sundials.RootDirs]

Creates a new value from the contents of an array.

of_array [Sundials.Roots]

Creates a new value from the contents of an array.

of_array [Sundials_RealArray]

Creates an array by copying the contents of a float array.

of_arrays [Sundials_RealArray2]

of_lists xxs constructs an array from an array of rows.

of_float [Ida.VarId]

Map floating-point constants to id values.

of_float [Sundials.Constraint]

Map floating-point constants to constraint values.

of_list [Sundials.RootDirs]

Creates an array by copying the contents of a d list.

of_list [Sundials.Roots]

Creates an array by copying the contents of a r list.

of_list [Sundials_ROArray]

Copy the elements of a list into a new immutable array.

of_list [Sundials_RealArray]

Creates an array by copying the contents of a float list.

of_lists [Sundials_RealArray2]

of_lists xxs constructs an array from lists of rows.

openfile [Sundials.Logfile]

Opens the named file.

ops [Sundials_Matrix.ArrayBand]

Operations on array-based band matrices.

ops [Sundials_Matrix.ArrayDense]

Operations on array-based dense matrices.

ops [Sundials_Matrix.Sparse]

Operations on sparse matrices.

ops [Sundials_Matrix.Band]

Operations on band matrices.

ops [Sundials_Matrix.Dense]

Operations on dense matrices.

ormqr [Sundials_Matrix.ArrayDense]

ormqr q beta v w work computes the product w = qv .

output_bytes [Sundials.Logfile]

Writes the given byte sequence to an open log file.

output_string [Sundials.Logfile]

Writes the given string to an open log file.

P
pcg [Sundials_LinearSolver.Iterative]

Krylov iterative solver using the preconditioned conjugate gradient (PCG) method.

potrf [Sundials_Matrix.ArrayDense]

Performs Cholesky factorization of a real symmetric positive matrix.

potrs [Sundials_Matrix.ArrayDense]

potrs a b finds the solution of ax = b using the Cholesky factorization found by Sundials_Matrix.ArrayDense.potrf.

pp [Nvector_pthreads]

Pretty-print a Pthreads nvector using the Format module.

pp [Nvector_openmp]

Pretty-print an OpenMP nvector using the Format module.

pp [Nvector_parallel]

Pretty-print the local portion of a parallel nvector using the Format module.

pp [Nvector_serial]

Pretty-print a serial nvector using the Format module.

pp [Sundials_Matrix.ArrayBand]

Pretty-print a band matrix using the Format module.

pp [Sundials_Matrix.ArrayDense]

Pretty-print an array dense matrix using the Format module.

pp [Sundials_Matrix.Sparse]

Pretty-print a sparse matrix using the Format module.

pp [Sundials_Matrix.Band]

Pretty-print a band matrix using the Format module.

pp [Sundials_Matrix.Dense]

Pretty-print a dense matrix using the Format module.

pp [Sundials_Matrix]

Pretty-print a generic matrix using the Format module.

pp [Sundials.RootDirs]

Pretty-print a root direction array using the Format module.

pp [Sundials.Roots]

Pretty-print a root array using the Format module.

pp [Sundials_LintArray]

Pretty-print an array using the Format module.

pp [Sundials_RealArray2]

Pretty-print an array using the Format module.

pp [Sundials_RealArray]

Pretty-print an array using the Format module.

ppi [Sundials_Matrix.ArrayBand]

Pretty-print an array band matrix using the Format module.

ppi [Sundials_Matrix.Sparse]

Pretty-print a sparse matrix using the Format module.

ppi [Sundials_Matrix.Band]

Pretty-print a band matrix using the Format module.

ppi [Sundials_Matrix.Dense]

Pretty-print a dense matrix using the Format module.

ppi [Sundials.RootDirs]

Pretty-print a root direction array using the Format module.

ppi [Sundials.Roots]

Pretty-print a root array using the Format module.

ppi [Sundials_LintArray]

Pretty-print an array using the Format module.

ppi [Sundials_RealArray2]

Pretty-print an array using the Format module.

ppi [Sundials_RealArray]

Pretty-print an array using the Format module.

prec_both [Cvodes_bbd]

Preconditioning from both sides using the Parallel Band-Block-Diagonal module.

prec_both [Cvode_bbd]

Preconditioning from both sides using the Parallel Band-Block-Diagonal module.

prec_both [Arkode_bbd]

Preconditioning from both sides using the Parallel Band-Block-Diagonal module.

prec_both [Cvodes.Adjoint.Spils.Banded]

Like Cvodes.Adjoint.Spils.Banded.prec_left but preconditions from both sides.

prec_both [Cvodes.Adjoint.Spils]

Left and right preconditioning with sensitivities.

prec_both [Arkode.MRIStep.Spils]

Left and right preconditioning.

prec_both [Arkode.ARKStep.Mass.Spils]

Left and right preconditioning.

prec_both [Arkode.ARKStep.Spils]

Left and right preconditioning.

prec_both [Arkode.Spils.Banded]

Like Arkode.Spils.Banded.prec_left but preconditions from both sides.

prec_both [Cvode.Spils.Banded]

Like Cvode.Spils.Banded.prec_left but preconditions from both sides.

prec_both [Cvode.Spils]

Left and right preconditioning.

prec_both_with_sens [Cvodes.Adjoint.Spils]

Left and right preconditioning without sensitivities.

prec_left [Idas_bbd]

Left preconditioning using the Parallel Band-Block-Diagonal module.

prec_left [Ida_bbd]

Left preconditioning using the Parallel Band-Block-Diagonal module.

prec_left [Cvodes_bbd]

Left preconditioning using the Parallel Band-Block-Diagonal module.

prec_left [Cvode_bbd]

Left preconditioning using the Parallel Band-Block-Diagonal module.

prec_left [Arkode_bbd]

Left preconditioning using the Parallel Band-Block-Diagonal module.

prec_left [Idas.Adjoint.Spils]

Left preconditioning without forward sensitivities.

prec_left [Cvodes.Adjoint.Spils.Banded]

A band matrix Cvodes.Adjoint.Spils.preconditioner based on difference quotients.

prec_left [Cvodes.Adjoint.Spils]

Left preconditioning without forward sensitivities.

prec_left [Arkode.MRIStep.Spils]

Left preconditioning.

prec_left [Arkode.ARKStep.Mass.Spils]

Left preconditioning.

prec_left [Arkode.ARKStep.Spils]

Left preconditioning.

prec_left [Arkode.Spils.Banded]

A band matrix Arkode.Spils.preconditioner based on difference quotients.

prec_left [Ida.Spils]

Left preconditioning.

prec_left [Cvode.Spils.Banded]

A band matrix Cvode.Spils.preconditioner based on difference quotients.

prec_left [Cvode.Spils]

Left preconditioning.

prec_left_with_sens [Idas.Adjoint.Spils]

Left preconditioning with forward sensitivities.

prec_left_with_sens [Cvodes.Adjoint.Spils]

Left preconditioning with forward sensitiviites.

prec_none [Idas.Adjoint.Spils]

No preconditioning.

prec_none [Cvodes.Adjoint.Spils]

No preconditioning.

prec_none [Arkode.MRIStep.Spils]

No preconditioning.

prec_none [Arkode.ARKStep.Mass.Spils]

No preconditioning.

prec_none [Arkode.ARKStep.Spils]

No preconditioning.

prec_none [Ida.Spils]

No preconditioning.

prec_none [Kinsol.Spils]

No preconditioning.

prec_none [Cvode.Spils]

No preconditioning.

prec_right [Cvodes_bbd]

Right preconditioning using the Parallel Band-Block-Diagonal module.

prec_right [Cvode_bbd]

Right preconditioning using the Parallel Band-Block-Diagonal module.

prec_right [Arkode_bbd]

Right preconditioning using the Parallel Band-Block-Diagonal module.

prec_right [Kinsol_bbd]

Right preconditioning using the Parallel Band-Block-Diagonal module.

prec_right [Cvodes.Adjoint.Spils.Banded]

Like Cvodes.Adjoint.Spils.Banded.prec_left but preconditions from the right.

prec_right [Cvodes.Adjoint.Spils]

Right preconditioning with sensitivities.

prec_right [Arkode.MRIStep.Spils]

Right preconditioning.

prec_right [Arkode.ARKStep.Mass.Spils]

Right preconditioning.

prec_right [Arkode.ARKStep.Spils]

Right preconditioning.

prec_right [Arkode.Spils.Banded]

Like Arkode.Spils.Banded.prec_left but preconditions from the right.

prec_right [Kinsol.Spils]

Right preconditioning.

prec_right [Cvode.Spils.Banded]

Like Cvode.Spils.Banded.prec_left but preconditions from the right.

prec_right [Cvode.Spils]

Right preconditioning.

prec_right_with_sens [Cvodes.Adjoint.Spils]

Right preconditioning without sensitivities.

print [Nvector.NVECTOR_OPS]

Prints to the given logfile (stdout, by default).

print [Nvector.Ops]

Prints to the given logfile (stdout, by default).

print [Sundials.Profiler]

Prints out a profiling summary.

print_band [Sundials_Matrix]

Prints a band matrix to the given log file.

print_dense [Sundials_Matrix]

Prints a dense matrix to the given log file.

print_integrator_stats [Idas.Adjoint]

Prints the integrator statistics on the given channel.

print_integrator_stats [Cvodes.Adjoint]

Prints the integrator statistics on the given channel.

print_integrator_stats [Ida]

Prints the integrator statistics on the given channel.

print_integrator_stats [Cvode]

Prints the integrator statistics on the given channel.

print_sparse [Sundials_Matrix]

Prints a sparse matrix to the given log file.

print_step_stats [Arkode.ERKStep]

Prints integrator statistics on the given channel.

print_step_stats [Arkode.ARKStep]

Prints integrator statistics on the given channel.

print_timestepper_stats [Arkode.ERKStep]

Prints time-stepper statistics on the given channel.

print_timestepper_stats [Arkode.ARKStep]

Prints time-stepper statistics on the given channel.

prod [Nvector.NVECTOR_OPS]

prod x y z calculates z = x * y (pointwise).

prod [Nvector.Ops]

prod x y z calculates z = x * y (pointwise).

Q
qr_fact [Sundials_LinearSolver.Iterative.Algorithms]

Performs a QR factorization of a Hessenberg matrix.

qr_sol [Sundials_LinearSolver.Iterative.Algorithms]

Solve the linear least squares problem.

R
reinit [Idas_bbd]

Reinitializes some BBD preconditioner parameters.

reinit [Ida_bbd]

Reinitializes some BBD preconditioner parameters.

reinit [Cvodes_bbd]

Reinitializes some BBD preconditioner parameters.

reinit [Cvode_bbd]

Reinitializes some BBD preconditioner parameters.

reinit [Arkode_bbd]

Reinitializes some BBD preconditioner parameters.

reinit [Idas.Adjoint.Quadrature]

This function reinitializes the integration of quadrature equations during the backward phase.

reinit [Idas.Adjoint]

Reinitializes the backward problem with new parameters and state values.

reinit [Idas.Sensitivity.Quadrature]

Reinitializes the quadrature sensitivity integration.

reinit [Idas.Sensitivity]

Reinitializes the forward sensitivity computation.

reinit [Idas.Quadrature]

Reinitializes the integration of quadrature equations.

reinit [Cvodes.Adjoint.Quadrature]

This function reinitializes the integration of quadrature equations during the backward phase.

reinit [Cvodes.Adjoint]

Reinitializes the backward problem with new parameters and state values.

reinit [Cvodes.Sensitivity.Quadrature]

Reinitializes the quadrature sensitivity integration.

reinit [Cvodes.Sensitivity]

Reinitializes the forward sensitivity computation.

reinit [Cvodes.Quadrature]

Reinitializes the integration of quadrature equations.

reinit [Arkode.MRIStep]

Reinitializes the solver with new parameters and state values.

reinit [Arkode.ERKStep]

Reinitializes the solver with new parameters and state values.

reinit [Arkode.ARKStep]

Reinitializes the solver with new parameters and state values.

reinit [Ida]

Reinitializes the solver with new parameters and state values.

reinit [Cvode]

Reinitializes the solver with new parameters and state values.

reinit [Sundials_LinearSolver.Direct.Klu]

Reinitializes memory and flags for a new factorization (symbolic and numeric) at the next solver setup call.

reset [Arkode.MRIStep]

Resets the state to the given independent variable value and dependent variable vector.

reset [Arkode.ERKStep]

Resets the state to the given independent variable value and dependent variable vector.

reset [Arkode.ARKStep]

Resets the state to the given independent variable value and dependent variable vector.

reset [Sundials.Roots]

Resets all elements to NoRoot.

resize [Arkode.MRIStep]

Change the number of equations and unknowns between integrator steps.

resize [Arkode.ERKStep]

Change the number of equations and unknowns between integrator steps.

resize [Arkode.ARKStep]

Change the number of equations and unknowns between integrator steps.

resize [Sundials_Matrix.Sparse]

Reallocates the underlying arrays to the given number of non-zero elements, or otherwise to the current number of non-zero elements .

rising [Sundials.Roots]

Returns true only if the specified element is Rising.

S
scale [Nvector.NVECTOR_OPS]

scale c x z calculates z = c *. x.

scale [Nvector.Ops]

scale c x z calculates z = c *. x.

scale [Sundials_Matrix.ArrayBand]

scale c a multiplies each element of the band matrix a by c.

scale [Sundials_Matrix.ArrayDense]

Multiplies each element by a constant.

scale_add [Sundials_Matrix.ArrayBand]

scale_add c a b calculates $A = cA + B$.

scale_add [Sundials_Matrix.ArrayDense]

scale_add c A B calculates $A = cA + B$.

scale_add [Sundials_Matrix.Sparse]

scale_add c A B calculates $A = cA + B$.

scale_add [Sundials_Matrix.Band]

scale_add c A B calculates $A = cA + B$.

scale_add [Sundials_Matrix.Dense]

scale_add c A B calculates $A = cA + B$.

scale_add [Sundials_Matrix]

scale_add c A B calculates $A = cA + B$.

scale_addi [Sundials_Matrix.ArrayBand]

scale_addi ml c A calculates $A = cA + I$.

scale_addi [Sundials_Matrix.ArrayDense]

scale_addi c A calculates $A = cA + I$.

scale_addi [Sundials_Matrix.Sparse]

scale_addi c A calculates $A = cA + I$.

scale_addi [Sundials_Matrix.Band]

scale_addi c A calculates $A = cA + I$.

scale_addi [Sundials_Matrix.Dense]

scale_addi c A calculates $A = cA + I$.

scale_addi [Sundials_Matrix]

scale_addi c A calculates $A = cA + I$.

scaleaddmulti [Nvector.NVECTOR_OPS]

scaleaddmulti c x y z scales x and adds it to the $n_v$ vectors in y.

scaleaddmulti [Nvector.Ops]

scaleaddmulti c x y z scales x and adds it to the $n_v$ vectors in y.

scaleaddmultivectorarray [Nvector.NVECTOR_OPS]

scaleaddmultivectorarray a x yy zz scales and adds $n_v$ vectors in x across the $n_s$ vector arrays in yy.

scaleaddmultivectorarray [Nvector.Ops]

scaleaddmultivectorarray a x yy zz scales and adds $n_v$ vectors in x across the $n_s$ vector arrays in yy.

scalevectorarray [Nvector.NVECTOR_OPS]

scalevectorarray c x z scales each of the $n_v$ vectors of x.

scalevectorarray [Nvector.Ops]

scalevectorarray c x z scales each of the $n_v$ vectors of x.

set [Nvector_array.ArrayOps]

Update the value in the array at the given index.

set [Sundials_Matrix.ArrayBand]

set a i j v sets the value at row i and column j of a to v.

set [Sundials_Matrix.ArrayDense]

set a i j v sets the value at row i and column j of a to v.

set [Sundials_Matrix.Sparse]

set a idx i v sets the idxth row/column to i and its value to v.

set [Sundials_Matrix.Band]

set a i j v sets the value at row i and column j of a to v.

set [Sundials_Matrix.Dense]

set a i j v sets the value at row i and column j of a to v.

set [Sundials.RootDirs]

set r i v sets the ith element of r to v.

set [Sundials.Roots]

set r i v sets the ith element of r to v.

set [Sundials_RealArray2]

set a i j v sets the value at row i and column j of a to v.

set [Sundials_RealArray]

set a i v sets the ith element of a to v.

set_adaptivity_method [Arkode.ERKStep]

Specifies the method and associated parameters used for time step adaptivity.

set_adaptivity_method [Arkode.ARKStep]

Specifies the method and associated parameters used for time step adaptivity.

set_all_root_directions [Arkode.MRIStep]

Like Arkode.MRIStep.set_root_direction but specifies a single direction for all root functions.

set_all_root_directions [Arkode.ERKStep]

Like Arkode.ERKStep.set_root_direction but specifies a single direction for all root functions.

set_all_root_directions [Arkode.ARKStep]

Like Arkode.ARKStep.set_root_direction but specifies a single direction for all root functions.

set_all_root_directions [Ida]

Like Ida.set_root_direction but specifies a single direction for all root functions.

set_all_root_directions [Cvode]

Like Cvode.set_root_direction but specifies a single direction for all root functions.

set_ark_table_num [Arkode.ARKStep]

Use specific built-in Butcher tables for an ImEx system.

set_atimes [Sundials_LinearSolver]

Set the linear solver's problem-specific Sundials_LinearSolver.atimesfn.

set_cfl_fraction [Arkode.ERKStep]

Specifies the fraction of the estimated explicitly stable step to use.

set_cfl_fraction [Arkode.ARKStep]

Specifies the fraction of the estimated explicitly stable step to use.

set_col [Sundials_Matrix.Sparse]

set_col a j idx sets the data index of column j to idx.

set_colval [Sundials_Matrix.Sparse]

set_colval a idx i sets the idxth column to i.

set_constraints [Idas.Adjoint]

Specifies a vector defining inequality constraints for each component of the solution vector u.

set_constraints [Cvodes.Adjoint]

Specifies a vector defining inequality constraints for each component of the solution vector y.

set_constraints [Arkode.ERKStep]

Specifies a vector defining inequality constraints for each component of the solution vector.

set_constraints [Arkode.ARKStep]

Specifies a vector defining inequality constraints for each component of the solution vector.

set_constraints [Ida]

Specifies a vector defining inequality constraints for each component of the solution vector u.

set_constraints [Kinsol]

Specifies a vector defining inequality constraints for each component of the solution vector u.

set_constraints [Cvode]

Specifies a vector defining inequality constraints for each component of the solution vector y.

set_convtest_fn [Sundials_NonlinearSolver.Sens]

Specify a convergence test callback for the nonlinear solver iteration when using sensitivities.

set_convtest_fn [Sundials_NonlinearSolver]

Specify a convergence test callback for the nonlinear solver iteration.

set_damping [Kinsol]

Sets the damping parameter for the fixed point or Picard iteration.

set_damping [Sundials_NonlinearSolver.FixedPoint]

Sets the damping parameter $\beta$ to use with Anderson acceleration.

set_damping_aa [Kinsol]

Set the Anderson acceleration damping parameter.

set_data [Sundials_Matrix.Sparse]

set_data a idx v sets the value of the idxth row v.

set_defaults [Arkode.MRIStep]

Resets all optional input parameters to their default values.

set_defaults [Arkode.ERKStep]

Resets all optional input parameters to their default values.

set_defaults [Arkode.ARKStep]

Resets all optional input parameters to their default values.

set_delay_aa [Kinsol]

Sets the number of iterations to delay the start of Anderson acceleration.

set_delta_gamma_max [Arkode.MRIStep]

Specifies a scaled step size ratio tolerance beyond which the linear solver setup routine will be signalled.

set_delta_gamma_max [Arkode.ARKStep]

Specifies a scaled step size ratio tolerance beyond which the linear solver setup routine will be signalled.

set_diagnostics [Arkode.MRIStep]

Write step adaptivity and solver diagnostics on the standard output (or given file).

set_diagnostics [Arkode.ERKStep]

Write step adaptivity and solver diagnostics on the standard output (or given file).

set_diagnostics [Arkode.ARKStep]

Write step adaptivity and solver diagnostics on the standard output (or given file).

set_dirk_table_num [Arkode.ARKStep]

Use specific built-in Butcher tables for an implicit integration of the problem.

set_dq_method [Idas.Sensitivity]

Sets the difference quotient strategy when sensitivity equations are computed internally by the solver rather than via callback.

set_dq_method [Cvodes.Sensitivity]

Sets the difference quotient strategy when sensitivity equations are computed internally by the solver rather than via callback.

set_eps_lin [Idas.Adjoint.Spils]

Sets the factor by which the Krylov linear solver's convergence test constant is reduced from the Newton iteration test constant.

set_eps_lin [Cvodes.Adjoint.Spils]

Sets the factor by which the Krylov linear solver's convergence test constant is reduced from the Newton iteration test constant.

set_eps_lin [Arkode.MRIStep.Spils]

Sets the factor by which the Krylov linear solver's convergence test constant is reduced from the Newton iteration test constant.

set_eps_lin [Arkode.ARKStep.Mass.Spils]

Sets the factor by which the Krylov linear solver's convergence test constant is reduced from the Newton iteration test constant.

set_eps_lin [Arkode.ARKStep.Spils]

Sets the factor by which the Krylov linear solver's convergence test constant is reduced from the Newton iteration test constant.

set_eps_lin [Ida.Spils]

Sets the factor by which the Krylov linear solver's convergence test constant is reduced from the Newton iteration test constant.

set_eps_lin [Cvode.Spils]

Sets the factor by which the Krylov linear solver's convergence test constant is reduced from the Newton iteration test constant.

set_eps_proj [Cvode]

Set the tolerance for the nonlinear-constrained least-squares problem solved by the projection function.

set_erk_table_num [Arkode.ARKStep]

Use specific built-in Butcher tables for an explicit integration of the problem.

set_err_con [Idas.Sensitivity]

Sets whether sensitivity variables are used in the error control mechanism.

set_err_con [Cvodes.Sensitivity]

Sets whether sensitivity variables are used in the error control mechanism.

set_err_handler_fn [Arkode.MRIStep]

Specifies a custom function for handling error messages.

set_err_handler_fn [Arkode.ERKStep]

Specifies a custom function for handling error messages.

set_err_handler_fn [Arkode.ARKStep]

Specifies a custom function for handling error messages.

set_err_handler_fn [Ida]

Specifies a custom function for handling error messages.

set_err_handler_fn [Kinsol]

Specifies a custom function for handling error messages.

set_err_handler_fn [Cvode]

Specifies a custom function for handling error messages.

set_error_bias [Arkode.ERKStep]

Specifies the bias to apply to the error estimates within accuracy-based adaptivity strategies.

set_error_bias [Arkode.ARKStep]

Specifies the bias to apply to the error estimates within accuracy-based adaptivity strategies.

set_error_file [Arkode.MRIStep]

Configure the default error handler to write messages to a file.

set_error_file [Arkode.ERKStep]

Configure the default error handler to write messages to a file.

set_error_file [Arkode.ARKStep]

Configure the default error handler to write messages to a file.

set_error_file [Ida]

Configure the default error handler to write messages to a file.

set_error_file [Kinsol]

Configure the default error handler to write messages to a file.

set_error_file [Cvode]

Configure the default error handler to write messages to a file.

set_eta_choice [Kinsol]

Specifies the method for computing the value of the eta coefficient used in the calculation of the linear solver convergence tolerance.

set_explicit [Arkode.ARKStep]

Disables the implicit portion of a problem.

set_falling [Sundials.Roots]

set_falling r i sets the ith element of r to Falling.

set_fixed_step [Arkode.MRIStep]

Disables time step adaptivity and fix the step size for all internal steps.

set_fixed_step [Arkode.ERKStep]

Disables time step adaptivity and fix the step size for all internal steps.

set_fixed_step [Arkode.ARKStep]

Disables time step adaptivity and fix the step size for all internal steps.

set_fixed_step_bounds [Arkode.ERKStep]

Specifies the step growth interval in which the step size will remain unchanged.

set_fixed_step_bounds [Arkode.ARKStep]

Specifies the step growth interval in which the step size will remain unchanged.

set_func_norm_tol [Kinsol]

Specifies the stopping tolerance on the scaled maximum norm.

set_gs_type [Sundials_LinearSolver.Iterative]

Sets the Gram-Schmidt orthogonalization to use.

set_id [Idas.Adjoint]

Class components of the state vector as either algebraic or differential.

set_id [Ida]

Class components of the state vector as either algebraic or differential.

set_imex [Arkode.ARKStep]

Enables both the implicit and explicit portions of a problem.

set_implicit [Arkode.ARKStep]

Disables the explicit portion of a problem.

set_increment_factor [Idas.Adjoint.Spils]

Sets the increment factor (dqincfac) to use in the difference-quotient approximation for the backward problem.

set_increment_factor [Ida.Spils]

Sets the increment factor (dqincfac) to use in the difference-quotient approximation.

set_info_file [Kinsol]

Write informational (non-error) messages to the given file.

set_info_file [Sundials_NonlinearSolver]

Sets the output file for informative (non-error) messages.

set_info_file [Sundials_LinearSolver.Iterative]

Sets the output file for informative (non-error) messages.

set_info_handler_fn [Kinsol]

Specifies a custom function for handling informational (non-error) messages.

set_init_setup [Kinsol]

Specifies that an initial call to the preconditioner setup function should be made (the default).

set_init_step [Idas.Adjoint]

Specifies the initial step size.

set_init_step [Cvodes.Adjoint]

Specifies the initial step size.

set_init_step [Arkode.ERKStep]

Specifies the initial step size.

set_init_step [Arkode.ARKStep]

Specifies the initial step size.

set_init_step [Ida]

Specifies the initial step size.

set_init_step [Cvode]

Specifies the initial step size.

set_interpolant_degree [Arkode.MRIStep]

Specifies the degree of the polynomial interpolant used for output values and implicit method predictors.

set_interpolant_degree [Arkode.ERKStep]

Specifies the degree of the polynomial interpolant used for output values and implicit method predictors.

set_interpolant_degree [Arkode.ARKStep]

Specifies the degree of the polynomial interpolant used for output values and implicit method predictors.

set_interpolant_type [Arkode.MRIStep]

Specifies the interpolation module used for output value interpolation and implicit method predictors.

set_interpolant_type [Arkode.ERKStep]

Specifies the interpolation module used for output value interpolation and implicit method predictors.

set_interpolant_type [Arkode.ARKStep]

Specifies the interpolation module used for output value interpolation and implicit method predictors.

set_jac_eval_frequency [Cvodes.Adjoint.Spils]

Sets the maximum number of time steps to wait before recomputation of the Jacobian or recommendation to update the preconditioner.

set_jac_eval_frequency [Arkode.MRIStep.Spils]

Sets the maximum number of time steps to wait before recomputation of the Jacobian or recommendation to update the preconditioner.

set_jac_eval_frequency [Arkode.ARKStep.Spils]

Sets the maximum number of time steps to wait before recomputation of the Jacobian or recommendation to update the preconditioner.

set_jac_eval_frequency [Cvode.Spils]

Sets the maximum number of time steps to wait before recomputation of the Jacobian or recommendation to update the preconditioner.

set_jac_times [Idas.Adjoint.Spils]

Change the Jacobian-times-vector function.

set_jac_times [Cvodes.Adjoint.Spils]

Change the Jacobian-times-vector function.

set_jac_times [Arkode.MRIStep.Spils]

Change the Jacobian-times-vector function.

set_jac_times [Arkode.ARKStep.Spils]

Change the Jacobian-times-vector function.

set_jac_times [Ida.Spils]

Change the Jacobian-times-vector function.

set_jac_times [Kinsol.Spils]

Change the Jacobian-times-vector function.

set_jac_times [Cvode.Spils]

Change the Jacobian-times-vector function.

set_line_search_ic [Ida]

Enables (true) or disables (false) the linesearch algorithm in the initial condition calculation.

set_linear [Arkode.MRIStep]

Specifies that the implicit portion of the problem is linear.

set_linear [Arkode.ARKStep]

Specifies that the implicit portion of the problem is linear.

set_linear_solution_scaling [Idas.Adjoint.Spils]

Enables or disables scaling of the linear system solution to account for a change in $\gamma$ in the linear system.

set_linear_solution_scaling [Cvodes.Adjoint.Spils]

Enables or disables scaling of the linear system solution to account for a change in $\gamma$ in the linear system.

set_linear_solution_scaling [Arkode.MRIStep.Spils]

Enables or disables scaling of the linear system solution to account for a change in $\gamma$ in the linear system.

set_linear_solution_scaling [Arkode.ARKStep.Spils]

Enables or disables scaling of the linear system solution to account for a change in $\gamma$ in the linear system.

set_linear_solution_scaling [Ida.Spils]

Enables or disables scaling of the linear system solution to account for a change in $\gamma$ in the linear system.

set_linear_solution_scaling [Cvode.Spils]

Enables or disables scaling of the linear system solution to account for a change in $\gamma$ in the linear system.

set_ls_norm_factor [Idas.Adjoint.Spils]

Sets the factor for converting from the integrator tolerance (WRMS norm) to the linear solver tolerance (L2 norm).

set_ls_norm_factor [Cvodes.Adjoint.Spils]

Sets the factor for converting from the integrator tolerance (WRMS norm) to the linear solver tolerance (L2 norm).

set_ls_norm_factor [Arkode.MRIStep.Spils]

Sets the factor for converting from the integrator tolerance (WRMS norm) to the linear solver tolerance (L2 norm).

set_ls_norm_factor [Arkode.ARKStep.Mass.Spils]

Sets the factor for converting from the integrator tolerance (WRMS norm) to the linear solver tolerance (L2 norm).

set_ls_norm_factor [Arkode.ARKStep.Spils]

Sets the factor for converting from the integrator tolerance (WRMS norm) to the linear solver tolerance (L2 norm).

set_ls_norm_factor [Ida.Spils]

Sets the factor for converting from the integrator tolerance (WRMS norm) to the linear solver tolerance (L2 norm).

set_ls_norm_factor [Cvode.Spils]

Sets the factor for converting from the integrator tolerance (WRMS norm) to the linear solver tolerance (L2 norm).

set_lsetup_fn [Sundials_NonlinearSolver]

Specify a linear solver setup callback.

set_lsetup_frequency [Cvodes.Adjoint.Spils]

Specifies the frequency of calls to the linear solver setup routine.

set_lsetup_frequency [Arkode.MRIStep]

Specifies the frequency of calls to the linear solver setup routine.

set_lsetup_frequency [Arkode.ARKStep]

Specifies the frequency of calls to the linear solver setup routine.

set_lsetup_frequency [Cvode.Spils]

Specifies the frequency of calls to the linear solver setup routine.

set_lsolve_fn [Sundials_NonlinearSolver.Sens]

Specify a linear solver callback with sensitivities.

set_lsolve_fn [Sundials_NonlinearSolver]

Specify a linear solver callback.

set_max_backs_ic [Ida]

Specifies the maximum number of linesearch backtracks allowed in any Newton iteration, when solving the initial conditions calculation problem.

set_max_beta_fails [Kinsol]

Specifies the maximum number of beta-condition failures in the line search algorithm.

set_max_cfail_growth [Arkode.ARKStep]

Specifies the maximum step size growth factor upon a convergence failure on a stage solve within a step.

set_max_conv_fails [Arkode.ARKStep]

Specifies the maximum number of nonlinear solver convergence failures permitted during one step.

set_max_conv_fails [Ida]

Specifies the maximum number of nonlinear solver convergence failures permitted during one step.

set_max_conv_fails [Cvode]

Specifies the maximum number of nonlinear solver convergence failures permitted during one step.

set_max_efail_growth [Arkode.ERKStep]

Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the solver.

set_max_efail_growth [Arkode.ARKStep]

Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the solver.

set_max_err_test_fails [Arkode.ERKStep]

Specifies the maximum number of error test failures permitted in attempting one step.

set_max_err_test_fails [Arkode.ARKStep]

Specifies the maximum number of error test failures permitted in attempting one step.

set_max_err_test_fails [Ida]

Specifies the maximum number of error test failures permitted in attempting one step.

set_max_err_test_fails [Cvode]

Specifies the maximum number of error test failures permitted in attempting one step.

set_max_first_growth [Arkode.ERKStep]

Specifies the maximum allowed step size change following the very first integration step.

set_max_first_growth [Arkode.ARKStep]

Specifies the maximum allowed step size change following the very first integration step.

set_max_growth [Arkode.ERKStep]

Specifies the maximum growth of the step size between consecutive time steps.

set_max_growth [Arkode.ARKStep]

Specifies the maximum growth of the step size between consecutive time steps.

set_max_hnil_warns [Arkode.MRIStep]

Specifies the maximum number of messages warning that t + h = t on the next internal step.

set_max_hnil_warns [Arkode.ERKStep]

Specifies the maximum number of messages warning that t + h = t on the next internal step.

set_max_hnil_warns [Arkode.ARKStep]

Specifies the maximum number of messages warning that t + h = t on the next internal step.

set_max_hnil_warns [Cvode]

Specifies the maximum number of messages warning that t + h = t on the next internal step.

set_max_iters [Sundials_NonlinearSolver]

Sets the maximum number of nonlinear solver iterations.

set_max_newton_step [Kinsol]

Specifies the maximum allowable scaled length of the Newton step.

set_max_nonlin_iters [Idas.Sensitivity]

Specifies the maximum number of nonlinear solver iterations for sensitivity variables permitted per step.

set_max_nonlin_iters [Cvodes.Sensitivity]

Sets the maximum number of nonlinear solver iterations for sensitivity variables permitted per step.

set_max_nonlin_iters [Arkode.MRIStep]

Specifies the maximum number of nonlinear solver iterations permitted per RK stage at each step.

set_max_nonlin_iters [Arkode.ARKStep]

Specifies the maximum number of nonlinear solver iterations permitted per RK stage at each step.

set_max_nonlin_iters [Ida]

Specifies the maximum number of nonlinear solver iterations permitted per step.

set_max_nonlin_iters [Cvode]

Specifies the maximum number of nonlinear solver iterations permitted per step.

set_max_num_constr_fails [Arkode.ERKStep]

Specifies the maximum number of constraint failures in a step before an error is signalled.

set_max_num_constr_fails [Arkode.ARKStep]

Specifies the maximum number of constraint failures in a step before an error is signalled.

set_max_num_iters_ic [Ida]

Specifies the maximum number of Newton iterations allowed in any one attempt to calculate initial conditions.

set_max_num_jacs_ic [Ida]

Specifies the maximum number of approximate Jacobian or preconditioner evaluations allowed when the Newton iteration appears to be slowly converging.

set_max_num_proj_fails [Cvode]

Set the maximum number of projection failures in a step attempt before an unrecoverable error is returned.

set_max_num_steps [Idas.Adjoint]

Specifies the maximum number of steps taken in attempting to reach a given output time.

set_max_num_steps [Cvodes.Adjoint]

Specifies the maximum number of steps taken in attempting to reach a given output time.

set_max_num_steps [Arkode.MRIStep]

Specifies the maximum number of steps taken in attempting to reach a given output time.

set_max_num_steps [Arkode.ERKStep]

Specifies the maximum number of steps taken in attempting to reach a given output time.

set_max_num_steps [Arkode.ARKStep]

Specifies the maximum number of steps taken in attempting to reach a given output time.

set_max_num_steps [Ida]

Specifies the maximum number of steps taken in attempting to reach a given output time.

set_max_num_steps [Cvode]

Specifies the maximum number of steps taken in attempting to reach a given output time.

set_max_num_steps_ic [Ida]

Specifies the maximum number of steps taken in attempting to reach a given output time in the initial condition calculation.

set_max_ord [Idas.Adjoint]

Specifies the maximum order of the linear multistep method.

set_max_ord [Cvodes.Adjoint]

Specifies the maximum order of the linear multistep method.

set_max_ord [Ida]

Specifies the maximum order of the linear multistep method.

set_max_ord [Cvode]

Specifies the maximum order of the linear multistep method.

set_max_restarts [Sundials_LinearSolver.Iterative]

Sets the number of GMRES restarts to allow.

set_max_setup_calls [Kinsol]

Specifies the maximum number of nonlinear iterations between calls to the preconditioner setup function.

set_max_step [Idas.Adjoint]

Specifies an upper bound on the magnitude of the step size.

set_max_step [Cvodes.Adjoint]

Specifies an upper bound on the magnitude of the step size.

set_max_step [Arkode.ERKStep]

Specifies an upper bound on the magnitude of the step size.

set_max_step [Arkode.ARKStep]

Specifies an upper bound on the magnitude of the step size.

set_max_step [Ida]

Specifies an upper bound on the magnitude of the step size.

set_max_step [Cvode]

Specifies an upper bound on the magnitude of the step size.

set_max_sub_setup_calls [Kinsol]

Specifies the maximum number of nonlinear iterations between checks by the residual monitoring algorithm.

set_maxl [Sundials_LinearSolver.Iterative]

Updates the number of linear solver iterations to allow.

set_min_eps [Kinsol]

Specifies that the scaled linear residual tolerance (epsilon) is bounded from below.

set_min_reduction [Arkode.ERKStep]

Specifies the minimum allowed reduction factor in step size between step attempts that result from a temporal error failure in the integration process.

set_min_reduction [Arkode.ARKStep]

Specifies the minimum allowed reduction factor in step size between step attempts that result from a temporal error failure in the integration process.

set_min_step [Cvodes.Adjoint]

Specifies a lower bound on the magnitude of the step size.

set_min_step [Arkode.ERKStep]

Specifies a lower bound on the magnitude of the step size.

set_min_step [Arkode.ARKStep]

Specifies a lower bound on the magnitude of the step size.

set_min_step [Cvode]

Specifies a lower bound on the magnitude of the step size.

set_monitor_fn [Cvode]

Specifies a function to be called after the given number of successful steps.

set_monitor_frequency [Cvode]

Sets the number of successful steps between calls to the monitoring function.

set_no_inactive_root_warn [Arkode.MRIStep]

Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

set_no_inactive_root_warn [Arkode.ERKStep]

Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

set_no_inactive_root_warn [Arkode.ARKStep]

Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

set_no_inactive_root_warn [Ida]

Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

set_no_inactive_root_warn [Cvode]

Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

set_no_init_setup [Kinsol]

Specifies that an initial call to the preconditioner setup function should not be made.

set_no_min_eps [Kinsol]

Specifies that the scaled linear residual tolerance (epsilon) is not bounded from below.

set_no_res_mon [Kinsol]

Disables the nonlinear residual monitoring scheme that controls Jacobian updating.

set_no_sensitivity [Idas.Adjoint]

Cancels the storage of sensitivity checkpointing data during forward solution (with Idas.Adjoint.forward_normal or Idas.Adjoint.forward_one_step).

set_no_sensitivity [Cvodes.Adjoint]

Cancels the storage of sensitivity checkpointing data during forward solution (with Cvodes.Adjoint.forward_normal or Cvodes.Adjoint.forward_one_step).

set_nonlin_conv_coef [Arkode.MRIStep]

Specifies the safety factor used in the nonlinear convergence test.

set_nonlin_conv_coef [Arkode.ARKStep]

Specifies the safety factor used in the nonlinear convergence test.

set_nonlin_conv_coef [Ida]

Specifies the safety factor used in the nonlinear convergence test.

set_nonlin_conv_coef [Cvode]

Specifies the safety factor used in the nonlinear convergence test.

set_nonlin_conv_coef_ic [Ida]

Specifies the positive constant in the nonlinear convergence test of the initial condition calculation.

set_nonlin_crdown [Arkode.MRIStep]

Specifies the constant used in estimating the nonlinear solver convergence rate.

set_nonlin_crdown [Arkode.ARKStep]

Specifies the constant used in estimating the nonlinear solver convergence rate.

set_nonlin_rdiv [Arkode.MRIStep]

Specifies the nonlinear correction threshold beyond which the iteration will be declared divergent.

set_nonlin_rdiv [Arkode.ARKStep]

Specifies the nonlinear correction threshold beyond which the iteration will be declared divergent.

set_nonlinear [Arkode.MRIStep]

Specifies that the implicit portion of the problem is nonlinear.

set_nonlinear [Arkode.ARKStep]

Specifies that the implicit portion of the problem is nonlinear.

set_noroot [Sundials.Roots]

set_noroot r i sets the ith element of r to NoRoot.

set_optimal_params [Arkode.ARKStep]

Sets all adaptivity and solver parameters to ‘best guess’ values.

set_ordering [Sundials_LinearSolver.Direct.Superlumt]

Sets the ordering algorithm used to minimize fill-in.

set_ordering [Sundials_LinearSolver.Direct.Klu]

Sets the ordering algorithm used to minimize fill-in.

set_post_inner_fn [Arkode.MRIStep]

Set the function called after each inner integration.

set_postprocess_step_fn [Arkode.MRIStep]

Set a post processing step function.

set_postprocess_step_fn [Arkode.ERKStep]

Set a post processing step function.

set_postprocess_step_fn [Arkode.ARKStep]

Set a post processing step function.

set_pre_inner_fn [Arkode.MRIStep]

Set the function called before each inner integration.

set_prec_type [Sundials_LinearSolver.Iterative]

Change the preconditioning direction without modifying callback functions.

set_preconditioner [Idas.Adjoint.Spils]

Change the preconditioner functions without using forward sensitivities.

set_preconditioner [Cvodes.Adjoint.Spils]

Change the preconditioner functions without using forward sensitivities.

set_preconditioner [Arkode.MRIStep.Spils]

Change the preconditioner functions.

set_preconditioner [Arkode.ARKStep.Mass.Spils]

Change the preconditioner functions.

set_preconditioner [Arkode.ARKStep.Spils]

Change the preconditioner functions.

set_preconditioner [Ida.Spils]

Change the preconditioner functions.

set_preconditioner [Kinsol.Spils]

Change the preconditioner functions.

set_preconditioner [Cvode.Spils]

Change the preconditioner functions.

set_preconditioner [Sundials_LinearSolver]

Set the linear solver's preconditioner routines.

set_preconditioner_with_sens [Idas.Adjoint.Spils]

Change the preconditioner functions using forward sensitivities.

set_preconditioner_with_sens [Cvodes.Adjoint.Spils]

Change the preconditioner functions using forward sensitivities.

set_predictor_method [Arkode.MRIStep]

Specifies the method for predicting implicit solutions.

set_predictor_method [Arkode.ARKStep]

Specifies the method for predicting implicit solutions.

set_print_level [Kinsol]

Sets the level of verbosity of informational messages.

set_print_level [Sundials_NonlinearSolver]

Sets the level of output verbosity.

set_print_level [Sundials_LinearSolver.Iterative]

Sets the level of output verbosity.

set_profiler [Sundials.Context]

Sets the profiler associated with a context.

set_proj_err_est [Cvode]

Enables or disables projection of the error estimate by the projection function.

set_proj_fail_eta [Cvode]

Sets the time-step reduction factor to apply on a projection function failure.

set_proj_frequency [Cvode]

Set the frequency with which the projection is performed.

set_rel_err_func [Kinsol]

Specifies the relative error in computing $F(u)$, which is used in the difference quotient approximation of the Jacobian-vector product.

set_res_mon [Kinsol]

Enables the nonlinear residual monitoring scheme that controls Jacobian updating.

set_res_mon_const_value [Kinsol]

Specifies the constant value of omega when using residual monitoring.

set_res_mon_params [Kinsol]

Specifies the minimum and maximum values in the formula for omega.

set_res_tolerance [Arkode.ARKStep]

Sets the residual tolerance.

set_return_newest [Kinsol]

Specifies whether fixed-point iteration should return the newest iteration or the iteration consistent with the last function evaluation.

set_rising [Sundials.Roots]

set_rising r i sets the ith element of r to Rising.

set_root_direction [Arkode.MRIStep]

set_root_direction s dir specifies the direction of zero-crossings to be located and returned.

set_root_direction [Arkode.ERKStep]

set_root_direction s dir specifies the direction of zero-crossings to be located and returned.

set_root_direction [Arkode.ARKStep]

set_root_direction s dir specifies the direction of zero-crossings to be located and returned.

set_root_direction [Ida]

set_root_direction s dir specifies the direction of zero-crossings to be located and returned.

set_root_direction [Cvode]

set_root_direction s dir specifies the direction of zero-crossings to be located and returned.

set_row [Sundials_Matrix.Sparse]

set_row a j idx sets the data index of row j to idx.

set_rowval [Sundials_Matrix.Sparse]

set_rowval a idx i sets the idxth row to i.

set_safety_factor [Arkode.ERKStep]

Specifies the safety factor to be applied to the accuracy-based estimated step.

set_safety_factor [Arkode.ARKStep]

Specifies the safety factor to be applied to the accuracy-based estimated step.

set_scaled_step_tol [Kinsol]

Specifies the stopping tolerance on the minimum scaled step length, which must be greater than zero.

set_scaling_vectors [Sundials_LinearSolver]

Sets the linear solver's left/right scaling vectors for use in Sundials_LinearSolver.solve.

set_small_num_efails [Arkode.ERKStep]

Specifies the threshold for “multiple” successive error failures before the factor from Arkode.ERKStep.set_max_efail_growth is applied.

set_small_num_efails [Arkode.ARKStep]

Specifies the threshold for “multiple” successive error failures before the factor from Arkode.ARKStep.set_max_efail_growth is applied.

set_stab_lim_det [Cvodes.Adjoint]

Indicates whether the BDF stability limit detection algorithm should be used.

set_stab_lim_det [Cvode]

Indicates whether the BDF stability limit detection algorithm should be used.

set_stability_fn [Arkode.ERKStep]

Sets a problem-dependent function to estimate a stable time step size for the explicit portion of the ODE system.

set_stability_fn [Arkode.ARKStep]

Sets a problem-dependent function to estimate a stable time step size for the explicit portion of the ODE system.

set_stage_predict_fn [Arkode.MRIStep]

Set the function called after the predictor algorithm and before the calculation of an implicit stage solution.

set_stage_predict_fn [Arkode.ARKStep]

Set the function called after the predictor algorithm and before the calculation of an implicit stage solution.

set_step_tolerance_ic [Ida]

Specifies a positive lower bound on the Newton step in the initial condition calculation.

set_stop_time [Arkode.MRIStep]

Limits the value of the independent variable t when solving.

set_stop_time [Arkode.ERKStep]

Limits the value of the independent variable t when solving.

set_stop_time [Arkode.ARKStep]

Limits the value of the independent variable t when solving.

set_stop_time [Ida]

Limits the value of the independent variable t when solving.

set_stop_time [Cvode]

Limits the value of the independent variable t when solving.

set_suppress_alg [Idas.Adjoint]

Indicates whether or not to ignore algebraic variables in the local error test.

set_suppress_alg [Ida]

Indicates whether or not to ignore algebraic variables in the local error test.

set_sys_fn [Sundials_NonlinearSolver.Sens]

Specify a system function callback with sensitivities.

set_sys_fn [Sundials_NonlinearSolver]

Specify a system function callback.

set_sys_func [Kinsol]

Changes the system function.

set_table [Arkode.ERKStep]

Specifies a customized Butcher table.

set_table_num [Arkode.ERKStep]

Use a specific built-in Butcher table for integration.

set_tables [Arkode.ARKStep]

Specifies a customized Butcher table or pair for the ERK, DIRK, or ARK method.

set_times [Arkode.ARKStep.Mass.Spils]

Change the mass matrix-times-vector function.

set_to_zero [Sundials_Matrix.ArrayBand]

Fills the matrix with zeros.

set_to_zero [Sundials_Matrix.ArrayDense]

Fills the matrix with zeros.

set_to_zero [Sundials_Matrix.Sparse]

Fills a matrix with zeros.

set_to_zero [Sundials_Matrix.Band]

Fills a matrix with zeros.

set_to_zero [Sundials_Matrix.Dense]

Fills a matrix with zeros.

set_to_zero [Sundials_Matrix]

Fills a matrix with zeros.

set_tolerances [Idas.Adjoint.Quadrature]

Specify how to use quadrature variables in step size control.

set_tolerances [Idas.Sensitivity.Quadrature]

Specify how to use quadrature sensitivities in step size control.

set_tolerances [Idas.Sensitivity]

Specify the integration tolerances for sensitivities.

set_tolerances [Idas.Quadrature]

Specify how to use quadrature variables in step size control.

set_tolerances [Cvodes.Adjoint.Quadrature]

Specify how to use quadrature variables in step size control.

set_tolerances [Cvodes.Adjoint]

Sets the integration tolerances for the backward problem.

set_tolerances [Cvodes.Sensitivity.Quadrature]

Specify how to use quadrature sensitivities in step size control.

set_tolerances [Cvodes.Sensitivity]

Sets the integration tolerances for sensitivities.

set_tolerances [Cvodes.Quadrature]

Specify how to use quadrature variables in step size control.

set_tolerances [Arkode.ERKStep]

Sets the integration tolerances.

set_tolerances [Arkode.ARKStep]

Sets the integration tolerances.

set_tolerances [Ida]

Set the integration tolerances.

set_tolerances [Cvode]

Sets the integration tolerances.

set_zero_guess [Sundials_LinearSolver]

Indicates that the next call to Sundials_LinearSolver.solve will be made with a zero initial guess.

setup [Sundials_NonlinearSolver.Sens]

Setup a nonlinear solver for sensitivities with an initial iteration value.

setup [Sundials_NonlinearSolver]

Setup a nonlinear solver with an initial iteration value.

setup [Sundials_LinearSolver]

Instruct the linear solver to prepare to solve using an updated system matrix.

sformat [Sundials_Matrix.Sparse]

Return the matrix format.

size [Sundials_Matrix.ArrayBand]

m, n = size a returns the numbers of rows m and columns n of a.

size [Sundials_Matrix.ArrayDense]

m, n = size a returns the numbers of rows m and columns n of a.

size [Sundials_Matrix.Sparse]

m, n = size a returns the numbers of rows m and columns n of a.

size [Sundials_Matrix.Band]

m, n = size a returns the numbers of rows m and columns n of a.

size [Sundials_Matrix.Dense]

m, n = size a returns the numbers of rows m and columns n of a.

size [Sundials_RealArray2]

nr, nc = size a returns the numbers of rows nr and columns nc of a

small_real [Sundials_Config]

The smallest value representable as a real.

solve [Kinsol]

Computes an approximate solution to a nonlinear system.

solve [Sundials_NonlinearSolver.Sens]

Solves a nonlinear system with sensitivities.

solve [Sundials_NonlinearSolver]

Solves a nonlinear system.

solve [Sundials_LinearSolver]

Solve a linear system.

solve_normal [Ida]

Integrates a DAE system over an interval.

solve_normal [Cvode]

Integrates an ODE system over an interval.

solve_one_step [Ida]

Like Ida.solve_normal but returns after one internal solver step.

solve_one_step [Cvode]

Like Cvode.solve_normal but returns after one internal solver step.

solver [Idas.Adjoint.Spils]

Create a Idas-specific linear solver from a generic iterative linear solver.

solver [Idas.Adjoint.Dls]

Create an Idas-specific linear solver from a Jacobian approximation function and a generic direct linear solver.

solver [Cvodes.Adjoint.Spils]

Create a Cvodes-specific linear solver from a generic iterative linear solver.

solver [Cvodes.Adjoint.Dls]

Create a Cvodes-specific linear solver from a a Jacobian approximation function and a generic direct linear solver.

solver [Cvodes.Adjoint.Diag]

A linear solver based on Jacobian approximation by difference quotients.

solver [Arkode.MRIStep.Spils]

Create an MRIStep-specific linear solver from a generic iterative linear solver.

solver [Arkode.MRIStep.Dls]

Create an MRIStep-specific linear solver from a Jacobian approximation function and a generic direct linear solver.

solver [Arkode.ARKStep.Mass.Spils]

Create an Arkode-specific mass linear solver from a generic iterative linear solver.

solver [Arkode.ARKStep.Mass.Dls]

Create an Arkode-specific mass linear solver from a mass-matrix constructor function and a generic dense linear solver.

solver [Arkode.ARKStep.Spils]

Create an ARKStep-specific linear solver from a generic iterative linear solver.

solver [Arkode.ARKStep.Dls]

Create an ARKStep-specific linear solver from a Jacobian approximation function and a generic direct linear solver.

solver [Ida.Spils]

Create an Ida-specific linear solver from a generic iterative linear solver.

solver [Ida.Dls]

Create an Ida-specific linear solver from a Jacobian approximation function and a generic direct linear solver.

solver [Kinsol.Spils]

Create a Kinsol-specific linear solver from a generic iterative linear solver.

solver [Kinsol.Dls]

Create a Kinsol-specific linear solver from a Jacobian approximation function and a generic direct linear solver.

solver [Cvode.Spils]

Create a Cvode-specific linear solver from a generic iterative linear solver.

solver [Cvode.Dls]

Create a Cvode-specific linear solver from a Jacobian approximation function and generic direct linear solver.

solver [Cvode.Diag]

A linear solver based on Jacobian approximation by difference quotients.

space [Arkode.MRIStep.Coupling]

Return a coupling table's real and integer workspace sizes.

space [Nvector.NVECTOR_OPS]

lrw, liw = space c returns the number of realtype words lrw and integer words liw required to store c.

space [Nvector.Ops]

lrw, liw = space c returns the number of realtype words lrw and integer words liw required to store c.

space [Sundials_Matrix.ArrayBand]

lrw, liw = space a returns the storage requirements of a as lrw realtype words and liw integer words.

space [Sundials_Matrix.ArrayDense]

lrw, liw = space a returns the storage requirements of a as lrw realtype words and liw integer words.

space [Sundials_Matrix.Sparse]

lrw, liw = space a returns the storage requirements of a as lrw realtype words and liw integer words.

space [Sundials_Matrix.Band]

lrw, liw = space a returns the storage requirements of a as lrw realtype words and liw integer words.

space [Sundials_Matrix.Dense]

lrw, liw = space a returns the storage requirements of a as lrw realtype words and liw integer words.

space [Sundials_Matrix]

lrw, liw = space a returns the storage requirements of a as lrw realtype words and liw integer words.

sparse_csc [Sundials_Matrix]

By default, sparse_csc n returns an n by n sparse matrix in CSC format with the capacity for n / 10 non-zero elements and all elements initialized to 0.0.

sparse_csr [Sundials_Matrix]

As for Sundials_Matrix.sparse_csc but the returned matrix is in CSR format.

spbcgs [Sundials_LinearSolver.Iterative]

Krylov iterative solver using the scaled preconditioned biconjugate stabilized (Bi-CGStab) method.

spfgmr [Sundials_LinearSolver.Iterative]

Krylov iterative solver using the scaled preconditioned flexible generalized minimum residual (GMRES) method.

spgmr [Sundials_LinearSolver.Iterative]

Krylov iterative solver using the scaled preconditioned generalized minimum residual (GMRES) method.

sptfqmr [Sundials_LinearSolver.Iterative]

Krylov iterative with the scaled preconditioned transpose-free quasi-minimal residual (SPTFQMR) method.

stages [Arkode.MRIStep.Coupling]

The number of slow abscissae ($s + 1$ ).

start [Sundials.Profiler]

Starts timing the region indicated by the given name.

stderr [Sundials.Logfile]

The stderr file.

stdout [Sundials.Logfile]

The stdout file.

sub [Sundials_ROArray]

Create a new immutable array from a slice of an existing one.

sub [Sundials_RealArray]

Access a sub-array of the given array without copying.

sundials_version [Sundials_Config]

The major, minor, and patch version numbers of the underlying Sundials/C library.

superlumt [Sundials_LinearSolver.Direct]

Creates a direct linear solver on sparse matrices using SuperLUMT.

superlumt_enabled [Sundials_Config]

Indicates whether the SuperLU_MT sparse linear solver is available.

T
to_array [Sundials.RootDirs]

Creates a new array from the contents of a given value.

to_array [Sundials.Roots]

Creates a new array from the contents of a given value.

to_array [Sundials_ROArray]

Copy an immutable array into a mutable one.

to_array [Sundials_RealArray]

Copies into a new float array.

to_float [Ida.VarId]

Map id values to floating-point constants.

to_float [Sundials.Constraint]

Map constraint values to floating-point constants.

to_list [Sundials.RootDirs]

Copies into a list.

to_list [Sundials.Roots]

Copies into a list.

to_list [Sundials_ROArray]

Copy the elements of an immutable array into a list.

to_list [Sundials_RealArray]

Copies into a float list.

toggle_off [Idas.Sensitivity]

Deactivates forward sensitivity calculations without deallocating memory.

toggle_off [Cvodes.Sensitivity]

Deactivates forward sensitivity calculations without deallocating memory.

turn_off [Cvodes.Sensitivity]

Deactivates forward sensitivity calculations with memory deallocation.

U
unconstrained [Sundials.Constraint]

The constant 0.0.

unit_roundoff [Sundials_Config]

The difference bewteen 1.0 and the minimum real greater than 1.0.

unwrap [Nvector_pthreads.Any]

Returns the payload of the generic vector if it was constructed with RA and an array of reals, otherwise raises Nvector.BadGenericType.

unwrap [Nvector_pthreads]

Aliases Nvector.unwrap.

unwrap [Nvector_openmp.Any]

Returns the payload of the generic vector if it was constructed with RA and an array of reals, otherwise raises Nvector.BadGenericType.

unwrap [Nvector_openmp]

Aliases Nvector.unwrap.

unwrap [Nvector_mpiplusx.Any]

Returns the payload of the generic vector if it was constructed with MpiPlusX, otherwise raises Nvector.BadGenericType.

unwrap [Nvector_mpiplusx]

Aliases Nvector.unwrap.

unwrap [Nvector_mpimany.Any]

Returns the payload of the generic vector if it was constructed with MpiMany, otherwise raises Nvector.BadGenericType.

unwrap [Nvector_mpimany]

Aliases Nvector.unwrap.

unwrap [Nvector_parallel.Any]

Returns the payload of the generic vector if it was constructed with Par and a parallel payload, otherwise raises Nvector.BadGenericType.

unwrap [Nvector_parallel]

Aliases Nvector.unwrap.

unwrap [Nvector_array.ARRAY_NVECTOR]

Returns the array underlying an nvector.

unwrap [Nvector_many.Any]

Returns the payload of the generic vector if it was constructed with Many, otherwise raises Nvector.BadGenericType.

unwrap [Nvector_many]

Aliases Nvector.unwrap.

unwrap [Nvector_serial.Any]

Returns the payload of the generic vector if it was constructed with RA and an array of reals, otherwise raises Nvector.BadGenericType.

unwrap [Nvector_serial]

Aliases Nvector.unwrap.

unwrap [Nvector]

unwrap nv returns the data underlying the nvector nv.

unwrap [Sundials_LinearSolver.Custom]

Return the internal state from an custom iterative linear solver.

unwrap [Sundials_Matrix.ArrayBand]

Direct access to the underlying storage array, which is accessed column first (unlike in Sundials_Matrix.ArrayBand.get).

unwrap [Sundials_Matrix.ArrayDense]

Direct access to the underlying storage array, which is accessed column first (unlike in Sundials_Matrix.ArrayDense.get).

unwrap [Sundials_Matrix.Sparse]

Direct access to the underlying sparse storage arrays.

unwrap [Sundials_Matrix.Band]

Direct access to the underlying storage array, which is accessed column first (unlike in Sundials_Matrix.Band.get).

unwrap [Sundials_Matrix.Dense]

Direct access to the underlying storage array, which is accessed column first (unlike in Sundials_Matrix.Dense.get).

unwrap [Sundials_Matrix]

Direct access to the underlying storage array, which is accessed column first (unlike in Sundials_Matrix.Dense.get, Sundials_Matrix.Band.get, and Sundials_Matrix.Sparse.get).

unwrap [Sundials_RealArray2]

Returns the Sundials_RealArray2.data array behind a matrix.

update [Sundials_Matrix.ArrayBand]

update a i j f sets the value at row i and column j of a to f v.

update [Sundials_Matrix.ArrayDense]

update a i j f sets the value at row i and column j of a to f v.

update [Sundials_Matrix.Band]

update a i j f sets the value at row i and column j of a to f v.

update [Sundials_Matrix.Dense]

update a i j f sets the value at row i and column j of a to f v.

V
version [Sundials_Config]

The major, minor, patch, and binding version numbers of Sundials/ML.

W
wl2norm [Nvector.NVECTOR_OPS]

wl2norm x w returns the weighted (w) Euclidean l2 norm of x.

wl2norm [Nvector.Ops]

wl2norm x w returns the weighted (w) Euclidean l2 norm of x.

wrap [Nvector_pthreads.Any]

wrap nthreads a creates a new Pthreads nvector with nthreads threads over the elements of a.

wrap [Nvector_pthreads]

wrap nthreads a creates a new Pthreads nvector with nthreads threads over the elements of a.

wrap [Nvector_openmp.Any]

wrap nthreads a creates a new OpenMP nvector with nthreads threads over the elements of a.

wrap [Nvector_openmp]

wrap nthreads a creates a new OpenMP nvector with nthreads threads over the elements of a.

wrap [Nvector_mpiplusx.Any]

Creates a generic nvector from an mpi communicator and a generic nvector.

wrap [Nvector_mpiplusx]

Creates an mpiplusx nvector from an mpi communicator and a generic nvector.

wrap [Nvector_mpimany.Any]

Creates a generic nvector from an array of generic nvectors.

wrap [Nvector_mpimany]

Creates a mpimany-vector nvector from an array of generic nvectors.

wrap [Nvector_parallel.Any]

wrap a creates a new parallel nvector from a.

wrap [Nvector_parallel]

wrap a creates a new parallel nvector from a.

wrap [Nvector_array.ARRAY_NVECTOR.Any]

Lifts an array to a generic nvector.

wrap [Nvector_array.ARRAY_NVECTOR]

Lifts an array to an nvector.

wrap [Nvector_many.Any]

Creates a generic nvector from an array of generic nvectors.

wrap [Nvector_many]

Creates a many-vector nvector from an array of generic nvectors.

wrap [Nvector_serial.Any]

wrap a creates a new serial nvector over the elements of a.

wrap [Nvector_serial]

wrap a creates a new serial nvector over the elements of a.

wrap [Nvector.NVECTOR]

Wrap data in an nvector.

wrap [Sundials_RealArray2]

Creates a new matrix from an existing Sundials_RealArray2.data array.

wrap_arrayband [Sundials_Matrix]

Creates an (array-based band) matrix by wrapping an existing array-based band matrix.

wrap_arraydense [Sundials_Matrix]

Creates an (array-based dense) matrix by wrapping an existing array-based dense matrix.

wrap_band [Sundials_Matrix]

Creates a (band) matrix by wrapping an existing band matrix.

wrap_custom [Sundials_Matrix]

Wrap a custom matrix value.

wrap_dense [Sundials_Matrix]

Creates a (dense) matrix by wrapping an existing dense matrix.

wrap_sparse [Sundials_Matrix]

Creates a (sparse) matrix by wrapping an existing sparse matrix.

write [Arkode.MRIStep.Coupling]

Write a coupling table on the standard output (or given file).

write [Arkode.ButcherTable]

Writes a Butcher table on the standard output (or given file).

write_butcher [Arkode.ERKStep]

Outputs the current butcher table on the standard output (or given file).

write_butcher [Arkode.ARKStep]

Outputs the current butcher table on the standard output (or given file).

write_coupling [Arkode.MRIStep]

Output the current coupling table on the standard output (or given file).

write_parameters [Arkode.MRIStep]

Outputs all the solver parameters on the standard output (or given file).

write_parameters [Arkode.ERKStep]

Outputs all the solver parameters on the standard output (or given file).

write_parameters [Arkode.ARKStep]

Outputs all the solver parameters on the standard output (or given file).

write_session [Arkode.MRIStep]

Summarize the session on the standard output (or given file).

write_session [Arkode.ERKStep]

Summarize the session on the standard output (or given file).

write_session [Arkode.ARKStep]

Summarize the session on the standard output (or given file).

wrmsnorm [Nvector.NVECTOR_OPS]

wrmsnorm x w returns the weighted root-mean-square norm of x with weight vector w.

wrmsnorm [Nvector.Ops]

wrmsnorm x w returns the weighted root-mean-square norm of x with weight vector w.

wrmsnormmask [Nvector.NVECTOR_OPS]

maxnormmask x w id returns the weighted root-mean-square norm of x using only elements where the corresponding id is non-zero.

wrmsnormmask [Nvector.Ops]

maxnormmask x w id returns the weighted root-mean-square norm of x using only elements where the corresponding id is non-zero.

wrmsnormmaskvectorarray [Nvector.NVECTOR_OPS]

wrmsnormmaskvectorarray x w id m computes the weighted root mean square norm of the $n_v$ vectors in x and w.

wrmsnormmaskvectorarray [Nvector.Ops]

wrmsnormmaskvectorarray x w id m computes the weighted root mean square norm of the $n_v$ vectors in x and w.

wrmsnormvectorarray [Nvector.NVECTOR_OPS]

wrmsnormvectorarray x w m computes the weighted root mean square norm of the $n_v$ vectors in x and w.

wrmsnormvectorarray [Nvector.Ops]

wrmsnormvectorarray x w m computes the weighted root mean square norm of the $n_v$ vectors in x and w.

wsqrsum [Nvector.NVECTOR_OPS.Local]

wsqrsum x w calculates the weighted squared sum of x with weight vector w.

wsqrsum [Nvector.Ops.Local]

wsqrsum x w calculates the weighted squared sum of x with weight vector w.

wsqrsummask [Nvector.NVECTOR_OPS.Local]

wsqrsummask x w id calculates the weighted squared sum of x with weight vector w for the elements where id is positive.

wsqrsummask [Nvector.Ops.Local]

wsqrsummask x w id calculates the weighted squared sum of x with weight vector w for the elements where id is positive.